13 resultados para Processing methods
em Digital Commons at Florida International University
Resumo:
The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^
Resumo:
The purpose of this study was to investigate the effects of direct instruction in story grammar on the reading and writing achievement of second graders. Three aspects of story grammar (character, setting, and plot) were taught with direct instruction using the concept development technique of deep processing. Deep processing which included (a) visualization (the drawing of pictures), (b) verbalization (the writing of sentences), (c) the attachment of physical sensations, and (d) the attachment of emotions to concepts was used to help students make mental connections necessary for recall and application of character, setting, and plot when constructing meaning in reading and writing.^ Four existing classrooms consisting of seventy-seven second-grade students were randomly assigned to two treatments, experimental and comparison. Both groups were pretested and posttested for reading achievement using the Gates-MacGinitie Reading Tests. Pretest and posttest writing samples were collected and evaluated. Writing achievement was measured using (a) a primary trait scoring scale (an adapted version of the Glazer Narrative Composition Scale) and (b) an holistic scoring scale by R. J. Pritchard. ANCOVAs were performed on the posttests adjusted for the pretests to determine whether or not the methods differed. There was no significant improvement in reading after the eleven-day experimental period for either group; nor did the two groups differ. There was significant improvement in writing for the experimental group over the comparison group. Pretreatment and posttreatment interviews were selectively collected to evaluate qualitatively if the students were able to identify and manipulate elements of story grammar and to determine patterns in metacognitive processing. Interviews provided evidence that most students in the experimental group gained while most students in the comparison group did not gain in their ability to manipulate, with understanding, the concepts of character, setting, and plot. ^
Resumo:
This research pursued the conceptualization, implementation, and verification of a system that enhances digital information displayed on an LCD panel to users with visual refractive errors. The target user groups for this system are individuals who have moderate to severe visual aberrations for which conventional means of compensation, such as glasses or contact lenses, does not improve their vision. This research is based on a priori knowledge of the user's visual aberration, as measured by a wavefront analyzer. With this information it is possible to generate images that, when displayed to this user, will counteract his/her visual aberration. The method described in this dissertation advances the development of techniques for providing such compensation by integrating spatial information in the image as a means to eliminate some of the shortcomings inherent in using display devices such as monitors or LCD panels. Additionally, physiological considerations are discussed and integrated into the method for providing said compensation. In order to provide a realistic sense of the performance of the methods described, they were tested by mathematical simulation in software, as well as by using a single-lens high resolution CCD camera that models an aberrated eye, and finally with human subjects having various forms of visual aberrations. Experiments were conducted on these systems and the data collected from these experiments was evaluated using statistical analysis. The experimental results revealed that the pre-compensation method resulted in a statistically significant improvement in vision for all of the systems. Although significant, the improvement was not as large as expected for the human subject tests. Further analysis suggest that even under the controlled conditions employed for testing with human subjects, the characterization of the eye may be changing. This would require real-time monitoring of relevant variables (e.g. pupil diameter) and continuous adjustment in the pre-compensation process to yield maximum viewing enhancement.
Resumo:
Physiological signals, which are controlled by the autonomic nervous system (ANS), could be used to detect the affective state of computer users and therefore find applications in medicine and engineering. The Pupil Diameter (PD) seems to provide a strong indication of the affective state, as found by previous research, but it has not been investigated fully yet. ^ In this study, new approaches based on monitoring and processing the PD signal for off-line and on-line affective assessment ("relaxation" vs. "stress") are proposed. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features (PDmean, PDmax and PDWalsh) are extracted from the preprocessed PD signal for the affective state classification. In order to select more relevant and reliable physiological data for further analysis, two types of data selection methods are applied, which are based on the paired t-test and subject self-evaluation, respectively. In addition, five different kinds of the classifiers are implemented on the selected data, which achieve average accuracies up to 86.43% and 87.20%, respectively. Finally, the receiver operating characteristic (ROC) curve is utilized to investigate the discriminating potential of each individual feature by evaluation of the area under the ROC curve, which reaches values above 0.90. ^ For the on-line affective assessment, a hard threshold is implemented first in order to remove the eye blinks from the PD signal and then a moving average window is utilized to obtain the representative value PDr for every one-second time interval of PD. There are three main steps for the on-line affective assessment algorithm, which are preparation, feature-based decision voting and affective determination. The final results show that the accuracies are 72.30% and 73.55% for the data subsets, which were respectively chosen using two types of data selection methods (paired t-test and subject self-evaluation). ^ In order to further analyze the efficiency of affective recognition through the PD signal, the Galvanic Skin Response (GSR) was also monitored and processed. The highest affective assessment classification rate obtained from GSR processing is only 63.57% (based on the off-line processing algorithm). The overall results confirm that the PD signal should be considered as one of the most powerful physiological signals to involve in future automated real-time affective recognition systems, especially for detecting the "relaxation" vs. "stress" states.^
Resumo:
Intraoperative neurophysiologic monitoring is an integral part of spinal surgeries and involves the recording of somatosensory evoked potentials (SSEP). However, clinical application of IONM still requires anywhere between 200 to 2000 trials to obtain an SSEP signal, which is excessive and introduces a significant delay during surgery to detect a possible neurological damage. The aim of this study is to develop a means to obtain the SSEP using a much less, twelve number of recordings. The preliminary step involved was to distinguish the SSEP with the ongoing brain activity. We first establish that the brain activity is indeed quasi-stationary whereas an SSEP is expected to be identical every time a trial is recorded. An algorithm was developed using Chebychev time windowing for preconditioning of SSEP trials to retain the morphological characteristics of somatosensory evoked potentials (SSEP). This preconditioning was followed by the application of a principal component analysis (PCA)-based algorithm utilizing quasi-stationarity of EEG on 12 preconditioned trials. A unique Walsh transform operation was then used to identify the position of the SSEP event. An alarm is raised when there is a 10% time in latency deviation and/or 50% peak-to-peak amplitude deviation, as per the clinical requirements. The algorithm shows consistency in the results in monitoring SSEP in up to 6-hour surgical procedures even under this significantly reduced number of trials. In this study, the analysis was performed on the data recorded in 29 patients undergoing surgery during which the posterior tibial nerve was stimulated and SSEP response was recorded from scalp. This method is shown empirically to be more clinically viable than present day approaches. In all 29 cases, the algorithm takes 4sec to extract an SSEP signal, as compared to conventional methods, which take several minutes. The monitoring process using the algorithm was successful and proved conclusive under the clinical constraints throughout the different surgical procedures with an accuracy of 91.5%. Higher accuracy and faster execution time, observed in the present study, in determining the SSEP signals provide a much improved and effective neurophysiological monitoring process.
Resumo:
English has been taught as a core and compulsory subject in China for decades. Recently, the demand for English in China has increased dramatically. China now has the world's largest English-learning population. The traditional English-teaching method cannot continue to be the only approach because it merely focuses on reading, grammar and translation, which cannot meet English learners and users' needs (i.e., communicative competence and skills in speaking and writing). ^ This study was conducted to investigate if the Picture-Word Inductive Model (PWIM), a new pedagogical method using pictures and inductive thinking, would benefit English learners in China in terms of potential higher output in speaking and writing. With the gauge of Cognitive Load Theory (CLT), specifically, its redundancy effect, I investigated whether processing words and a picture concurrently would present a cognitive overload for English learners in China. ^ I conducted a mixed methods research study. A quasi-experiment (pretest, intervention for seven weeks, and posttest) was conducted using 234 students in four groups in Lianyungang, China (58 fourth graders and 57 seventh graders as an experimental group with PWIM and 59 fourth graders and 60 seventh graders as a control group with the traditional method). No significant difference in the effects of PWIM was found on vocabulary acquisition based on grade levels. Observations, questionnaires with open-ended questions, and interviews were deployed to answer the three remaining research questions. A few students felt cognitively overloaded when they encountered too many writing samples, too many new words at one time, repeated words, mismatches between words and pictures, and so on. Many students listed and exemplified numerous strengths of PWIM, but a few mentioned weaknesses of PWIM. The students expressed the idea that PWIM had a positive effect on their English teaching. ^ As integrated inferences, qualitative findings were used to explain the quantitative results that there were no significant differences of the effects of the PWIM between the experimental and control groups in both grade levels, from four contextual aspects: time constraints on PWIM implementation, teachers' resistance, how to use PWIM and PWIM implemented in a classroom over 55 students.^
Resumo:
The presence of inhibitory substances in biological forensic samples has, and continues to affect the quality of the data generated following DNA typing processes. Although the chemistries used during the procedures have been enhanced to mitigate the effects of these deleterious compounds, some challenges remain. Inhibitors can be components of the samples, the substrate where samples were deposited or chemical(s) associated to the DNA purification step. Therefore, a thorough understanding of the extraction processes and their ability to handle the various types of inhibitory substances can help define the best analytical processing for any given sample. A series of experiments were conducted to establish the inhibition tolerance of quantification and amplification kits using common inhibitory substances in order to determine if current laboratory practices are optimal for identifying potential problems associated with inhibition. DART mass spectrometry was used to determine the amount of inhibitor carryover after sample purification, its correlation to the initial inhibitor input in the sample and the overall effect in the results. Finally, a novel alternative at gathering investigative leads from samples that would otherwise be ineffective for DNA typing due to the large amounts of inhibitory substances and/or environmental degradation was tested. This included generating data associated with microbial peak signatures to identify locations of clandestine human graves. Results demonstrate that the current methods for assessing inhibition are not necessarily accurate, as samples that appear inhibited in the quantification process can yield full DNA profiles, while those that do not indicate inhibition may suffer from lowered amplification efficiency or PCR artifacts. The extraction methods tested were able to remove >90% of the inhibitors from all samples with the exception of phenol, which was present in variable amounts whenever the organic extraction approach was utilized. Although the results attained suggested that most inhibitors produce minimal effect on downstream applications, analysts should practice caution when selecting the best extraction method for particular samples, as casework DNA samples are often present in small quantities and can contain an overwhelming amount of inhibitory substances.
Resumo:
This research pursued the conceptualization, implementation, and verification of a system that enhances digital information displayed on an LCD panel to users with visual refractive errors. The target user groups for this system are individuals who have moderate to severe visual aberrations for which conventional means of compensation, such as glasses or contact lenses, does not improve their vision. This research is based on a priori knowledge of the user's visual aberration, as measured by a wavefront analyzer. With this information it is possible to generate images that, when displayed to this user, will counteract his/her visual aberration. The method described in this dissertation advances the development of techniques for providing such compensation by integrating spatial information in the image as a means to eliminate some of the shortcomings inherent in using display devices such as monitors or LCD panels. Additionally, physiological considerations are discussed and integrated into the method for providing said compensation. In order to provide a realistic sense of the performance of the methods described, they were tested by mathematical simulation in software, as well as by using a single-lens high resolution CCD camera that models an aberrated eye, and finally with human subjects having various forms of visual aberrations. Experiments were conducted on these systems and the data collected from these experiments was evaluated using statistical analysis. The experimental results revealed that the pre-compensation method resulted in a statistically significant improvement in vision for all of the systems. Although significant, the improvement was not as large as expected for the human subject tests. Further analysis suggest that even under the controlled conditions employed for testing with human subjects, the characterization of the eye may be changing. This would require real-time monitoring of relevant variables (e.g. pupil diameter) and continuous adjustment in the pre-compensation process to yield maximum viewing enhancement.
Resumo:
Use of remotely sensed data for environmental and ecological assessment has recently become more widespread in wetland research and management and advantages and limitations of this approach have been addresses (Ozesmi and Bauer 2002). Applications of remote sensing (RS) methods vary in spatial and temporal extent and resolution, in the types of data acquired, and in digital processing and pattern recognition algorithms used.
Resumo:
This study examines the correlation between how certified music educators understand audio technology and how they incorporate it in their instructional methods. Participants were classroom music teachers selected from fifty middle schools in Miami- Dade Public Schools. The study adopted a non-experimental research design in which a survey was the primary tool of investigation. The findings reveal that a majority of middle school music teachers in Miami-Dade are not familiar with advanced audiorecording software or any other digital device dedicated to the recording and processing of audio signals. Moreover, they report a lack of opportunities to develop this knowledge. Younger music teachers, however, are more open to developing up-to-date instructional methodologies. Most of the participants agreed that music instruction should be a platform for preparing students for a future in the entertainment industry. A basic knowledge of music business should be delivered to students enrolled in middle-school music courses.
Resumo:
English has been taught as a core and compulsory subject in China for decades. Recently, the demand for English in China has increased dramatically. China now has the world’s largest English-learning population. The traditional English-teaching method cannot continue to be the only approach because it merely focuses on reading, grammar and translation, which cannot meet English learners and users’ needs (i.e., communicative competence and skills in speaking and writing). This study was conducted to investigate if the Picture-Word Inductive Model (PWIM), a new pedagogical method using pictures and inductive thinking, would benefit English learners in China in terms of potential higher output in speaking and writing. With the gauge of Cognitive Load Theory (CLT), specifically, its redundancy effect, I investigated whether processing words and a picture concurrently would present a cognitive overload for English learners in China. I conducted a mixed methods research study. A quasi-experiment (pretest, intervention for seven weeks, and posttest) was conducted using 234 students in four groups in Lianyungang, China (58 fourth graders and 57 seventh graders as an experimental group with PWIM and 59 fourth graders and 60 seventh graders as a control group with the traditional method). No significant difference in the effects of PWIM was found on vocabulary acquisition based on grade levels. Observations, questionnaires with open-ended questions, and interviews were deployed to answer the three remaining research questions. A few students felt cognitively overloaded when they encountered too many writing samples, too many new words at one time, repeated words, mismatches between words and pictures, and so on. Many students listed and exemplified numerous strengths of PWIM, but a few mentioned weaknesses of PWIM. The students expressed the idea that PWIM had a positive effect on their English teaching. As integrated inferences, qualitative findings were used to explain the quantitative results that there were no significant differences of the effects of the PWIM between the experimental and control groups in both grade levels, from four contextual aspects: time constraints on PWIM implementation, teachers’ resistance, how to use PWIM and PWIM implemented in a classroom over 55 students.
Resumo:
Physiological signals, which are controlled by the autonomic nervous system (ANS), could be used to detect the affective state of computer users and therefore find applications in medicine and engineering. The Pupil Diameter (PD) seems to provide a strong indication of the affective state, as found by previous research, but it has not been investigated fully yet. In this study, new approaches based on monitoring and processing the PD signal for off-line and on-line affective assessment (“relaxation” vs. “stress”) are proposed. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features (PDmean, PDmax and PDWalsh) are extracted from the preprocessed PD signal for the affective state classification. In order to select more relevant and reliable physiological data for further analysis, two types of data selection methods are applied, which are based on the paired t-test and subject self-evaluation, respectively. In addition, five different kinds of the classifiers are implemented on the selected data, which achieve average accuracies up to 86.43% and 87.20%, respectively. Finally, the receiver operating characteristic (ROC) curve is utilized to investigate the discriminating potential of each individual feature by evaluation of the area under the ROC curve, which reaches values above 0.90. For the on-line affective assessment, a hard threshold is implemented first in order to remove the eye blinks from the PD signal and then a moving average window is utilized to obtain the representative value PDr for every one-second time interval of PD. There are three main steps for the on-line affective assessment algorithm, which are preparation, feature-based decision voting and affective determination. The final results show that the accuracies are 72.30% and 73.55% for the data subsets, which were respectively chosen using two types of data selection methods (paired t-test and subject self-evaluation). In order to further analyze the efficiency of affective recognition through the PD signal, the Galvanic Skin Response (GSR) was also monitored and processed. The highest affective assessment classification rate obtained from GSR processing is only 63.57% (based on the off-line processing algorithm). The overall results confirm that the PD signal should be considered as one of the most powerful physiological signals to involve in future automated real-time affective recognition systems, especially for detecting the “relaxation” vs. “stress” states.
Resumo:
The presence of inhibitory substances in biological forensic samples has, and continues to affect the quality of the data generated following DNA typing processes. Although the chemistries used during the procedures have been enhanced to mitigate the effects of these deleterious compounds, some challenges remain. Inhibitors can be components of the samples, the substrate where samples were deposited or chemical(s) associated to the DNA purification step. Therefore, a thorough understanding of the extraction processes and their ability to handle the various types of inhibitory substances can help define the best analytical processing for any given sample. A series of experiments were conducted to establish the inhibition tolerance of quantification and amplification kits using common inhibitory substances in order to determine if current laboratory practices are optimal for identifying potential problems associated with inhibition. DART mass spectrometry was used to determine the amount of inhibitor carryover after sample purification, its correlation to the initial inhibitor input in the sample and the overall effect in the results. Finally, a novel alternative at gathering investigative leads from samples that would otherwise be ineffective for DNA typing due to the large amounts of inhibitory substances and/or environmental degradation was tested. This included generating data associated with microbial peak signatures to identify locations of clandestine human graves. Results demonstrate that the current methods for assessing inhibition are not necessarily accurate, as samples that appear inhibited in the quantification process can yield full DNA profiles, while those that do not indicate inhibition may suffer from lowered amplification efficiency or PCR artifacts. The extraction methods tested were able to remove >90% of the inhibitors from all samples with the exception of phenol, which was present in variable amounts whenever the organic extraction approach was utilized. Although the results attained suggested that most inhibitors produce minimal effect on downstream applications, analysts should practice caution when selecting the best extraction method for particular samples, as casework DNA samples are often present in small quantities and can contain an overwhelming amount of inhibitory substances.^