6 resultados para Prices traded of a stock
em Digital Commons at Florida International University
Resumo:
Since the seminal works of Markowitz (1952), Sharpe (1964), and Lintner (1965), numerous studies on portfolio selection and performance measure have been based upon the mean-variance framework. However, several researchers (e.g., Arditti (1967, and 1971), Samuelson (1970), and Rubinstein (1973)) argue that the higher moments cannot be neglected unless there is reason to believe that: (i) the asset returns are normally distributed and the investor's utility function is quadratic, or (ii) the empirical evidence demonstrates that higher moments are irrelevant to the investor's decision. Based on the same argument, this dissertation investigates the impact of higher moments of return distributions on three issues concerning the 14 international stock markets.^ First, the portfolio selection with skewness is determined using: the Polynomial Goal Programming in which investor preferences for skewness can be incorporated. The empirical findings suggest that the return distributions of international stock markets are not normally distributed, and that the incorporation of skewness into an investor's portfolio decision causes a major change in the construction of his optimal portfolio. The evidence also indicates that an investor will trade expected return of the portfolio for skewness. Moreover, when short sales are allowed, investors are better off as they attain higher expected return and skewness simultaneously.^ Second, the performance of international stock markets are evaluated using two types of performance measures: (i) the two-moment performance measures of Sharpe (1966), and Treynor (1965), and (ii) the higher-moment performance measures of Prakash and Bear (1986), and Stephens and Proffitt (1991). The empirical evidence indicates that higher moments of return distributions are significant and relevant to the investor's decision. Thus, the higher moment performance measures should be more appropriate to evaluate the performances of international stock markets. The evidence also indicates that various measures provide a vastly different performance ranking of the markets, albeit in the same direction.^ Finally, the inter-temporal stability of the international stock markets is investigated using the Parhizgari and Prakash (1989) algorithm for the Sen and Puri (1968) test which accounts for non-normality of return distributions. The empirical finding indicates that there is strong evidence to support the stability in international stock market movements. However, when the Anderson test which assumes normality of return distributions is employed, the stability in the correlation structure is rejected. This suggests that the non-normality of the return distribution is an important factor that cannot be ignored in the investigation of inter-temporal stability of international stock markets. ^
Resumo:
Extreme stock price movements are of great concern to both investors and the entire economy. For investors, a single negative return, or a combination of several smaller returns, can possible wipe out so much capital that the firm or portfolio becomes illiquid or insolvent. If enough investors experience this loss, it could shock the entire economy. An example of such a case is the stock market crash of 1987. Furthermore, there has been a lot of recent interest regarding the increasing volatility of stock prices. ^ This study presents an analysis of extreme stock price movements. The data utilized was the daily returns for the Standard and Poor's 500 index from January 3, 1978 to May 31, 2001. Research questions were analyzed using the statistical models provided by extreme value theory. One of the difficulties in examining stock price data is that there is no consensus regarding the correct shape of the distribution function generating the data. An advantage with extreme value theory is that no detailed knowledge of this distribution function is required to apply the asymptotic theory. We focus on the tail of the distribution. ^ Extreme value theory allows us to estimate a tail index, which we use to derive bounds on the returns for very low probabilities on an excess. Such information is useful in evaluating the volatility of stock prices. There are three possible limit laws for the maximum: Gumbel (thick-tailed), Fréchet (thin-tailed) or Weibull (no tail). Results indicated that extreme returns during the time period studied follow a Fréchet distribution. Thus, this study finds that extreme value analysis is a valuable tool for examining stock price movements and can be more efficient than the usual variance in measuring risk. ^
Resumo:
The first chapter analizes conditional assistance programs. They generate conflicting relationships between international financial institutions (IFIs) and member countries. The experience of IFIs with conditionality in the 1990s led them to allow countries more latitude in the design of their reform programs. A reformist government does not need conditionality and it is useless if it does not want to reform. A government that faces opposition may use conditionality and the help of pro-reform lobbies as a lever to counteract anti-reform groups and succeed in implementing reforms. The second chapter analizes economies saddled with taxes and regulations. I consider an economy in which many taxes, subsidies, and other distortionary restrictions are in place simultaneously. If I start from an inefficient laissez-faire equilibrium because of some domestic distortion, a small trade tax or subsidy can yield a first-order welfare improvement, even if the instrument itself creates distortions of its own. This may result in "welfare paradoxes". The purpose of the chapter is to quantify the welfare effects of changes in tax rates in a small open economy. I conduct the simulation in the context of an intertemporal utility maximization framework. I apply numerical methods to the model developed by Karayalcin. I introduce changes in the tax rates and quantify both the impact on welfare, consumption and foreign assets, and the path to the new steady-state values. The third chapter studies the role of stock markets and adjustment costs in the international transmission of supply shocks. The analysis of the transmission of a positive supply shock that originates in one of the countries shows that on impact the shock leads to an inmediate stock market boom enjoying the technological advance, while the other country suffers from depress stock market prices as demand for its equity declines. A period of adjustment begins culminating in a steady state capital and output level that is identical to the one before the shock. The the capital stock of one country undergoes a non-monotonic adjustment. The model is tested with plausible values of the variables and the numeric results confirm the predictions of the theory.
Resumo:
Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubblelike deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the nonfundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.
Resumo:
Exchange traded funds (ETFs) have increased significantly in popularity since they were first introduced in 1993. However, there is still much that is unknown about ETFs in the extant literature. This dissertation attempts to fill gaps in the ETF literature by using three related essays. In these three essays, we compare ETFs to closed ended mutual funds (CEFs) by decomposing the bid-ask spread into its three components; we look at the intraday shape of ETFs and compare it to the intraday shape of equities as well as examine the co-integration factor between ETFs on the London Stock Exchange and the New York Stock Exchange; we also examine the differences between leveraged ETFs and unleveraged ETFs by analyzing the impact of liquidity and volatility. These three essays are presented in Chapters 1, 2, and 3, respectively. ^ Chapter one uses the Huang and Stoll (1997) model to decompose the bid-ask spread in CEFs and ETFs for two distinct periods—a normal and a volatile period. We show a higher adverse selection component for CEFs than for ETFs without regard to volatility. However, both ETFs and CEFs increased in magnitude of the adverse selection component in the period of high volatility. Chapter two uses a mix of the Werner and Kleidon (1993) and the Hupperets and Menkveld (2002) methods to get the intraday shape of ETFs and analyze co-integration between London and New York trading. We find two different shapes for New York and London ETFs. There also appears to be evidence of co-integration in the overlapping two-hour trading period but not over the entire trading day for the two locations. The third chapter discusses the new class of ETFs called leveraged ETFs. We examine the liquidity and depth differences between unleveraged and leveraged ETFs at the aggregate level and when the leveraged ETFs are classified by the leveraged multiples of -3, -2, -1, 2, and 3, both for a normal and a volatile period. We find distinct differences between leveraged and unleveraged ETFs at the aggregate level, with leveraged ETFs having larger spreads than unleveraged ETFs. Furthermore, while both leveraged and unleveraged ETFs have larger spreads in high volatility, for the leveraged ETFs the change in magnitude is significantly larger than for the unleveraged ETFs. Among the multiples, the -2 leveraged ETF is the most pronounced in its liquidity characteristics, more so in volatile times. ^
Resumo:
Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubble-like deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the non-fundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.