10 resultados para Pretreatment of Biomass

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegetation patterns of mangroves in the Florida Coastal Everglades (FCE) result from the interaction of environmental gradients and natural disturbances (i.e., hurricanes), creating an array of distinct riverine and scrub mangroves across the landscape. We investigated how landscape patterns of biomass and total net primary productivity (NPPT), including allocation in above- and below-ground mangrove components, vary inter-annually (2001–2004) across gradients in soil properties and hydroperiod in two distinct FCE basins: Shark River Estuary and Taylor River Slough. We propose that the allocation of belowground biomass and productivity (NPPB) relative to aboveground allocation is greater in regions with P limitation and permanent flooding. Porewater sulfide was significantly higher in Taylor River (1.2 ± 0.3 mM) compared to Shark River (0.1 ± 0.03 mM) indicating the lack of a tidal signature and more permanent flooding in this basin. There was a decrease in soil P density and corresponding increase in soil N:P from the mouth (28) to upstream locations (46–105) in Shark River that was consistent with previous results in this region. Taylor River sites showed the highest P limitation (soil N:P > 60). Average NPPT was double in higher P environments (17.0 ± 1.1 Mg ha−1 yr−1) compared to lower P regions (8.3 ± 0.3 Mg ha−1 yr−1). Root biomass to aboveground wood biomass (BGB:AWB) ratio was 17 times higher in P-limited environments demonstrating the allocation strategies of mangroves under resource limitation. Riverine mangroves allocated most of the NPPT to aboveground (69%) while scrub mangroves showed the highest allocation to belowground (58%). The total production to biomass (P:B) ratios were lower in Shark River sites (0.11 yr−1); whereas in Taylor River sites P:B ratios were higher and more variable (0.13–0.24 yr−1). Our results suggest that the interaction of lower P availability in Taylor River relative to Shark River basin, along with higher sulfide and permanent flooding account for higher allocation of belowground biomass and production, at expenses of aboveground growth and wood biomass. These distinct patterns of carbon partitioning between riverine and scrub mangroves in response to environmental stress support our hypothesis that belowground allocation is a significant contribution to soil carbon storage in forested wetlands across FCE, particularly in P-limited scrub mangroves. Elucidating these biomass strategies will improve analysis of carbon budgets (storage and production) in neotropical mangroves and understanding what conditions lead to net carbon sinks in the tropical coastal zone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Freshwater wetland soils of the Everglades were studied in order to assess present environmental conditions and paleo-environmental changes using organic geochemistry techniques. Organic matter in dominant vegetation, peat and marl soils was characterized by geochemical means. Samples were selected along nutrient and hydrology gradients with the objective to determine the historical sources of organic matter as well as the extent of its preservation. Effective molecular proxies were developed to differentiate the relative input of organic matter from different biological sources to wetland soils. Thus historical vegetation shifts and hydroperiods were reconstructed using those proxies. The data show good correlations with historical water management practices starting at the turn of the century and during the mid 1900's. Overall, significant shortening of hydroperiods during this period was observed. The soil organic matter (SOM) preservation was assessed through elemental analysis and molecular characterizations of bulk 13C stable isotopes, solid state 13C NMR spectroscopy, UV-Vis spectroscopy, and tetramethyl ammonium hydroxide (TMAH) thermochemolysis-GC/MS. The relationship of the environmental conditions and degradation status of the soil organic matter (SOM) among the sites suggested that both high nutrient levels and long hydroperiod favor organic matter degradation in the soils. This is probably the result of an increase in the microbial activity in the soils which have higher nutrient levels, while longer hydroperiods may enhance physical/chemical degradation processes. The most significant transformations of biomass litter in this environment are controlled by very early physical/chemical processes and once the OM is incorporated into surface soils, the diagenetic change, even over extended periods of time is comparatively minimal, and SOM is relatively well preserved regardless of hydroperiod or nutrient levels. SOM accumulated in peat soils is more prone to continued degradation than the SOM in the marl soils. The latter is presumably stabilized early on through direct air exposure (oxidation) and thus, it is more refractory to further diagenetic transformations such as humification and aromatization reactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aluminum oxide (Al2O3, or alumina) is a conventional ceramic known for applications such as wear resistant coatings, thermal liners, heaters, crucibles, dielectric systems, etc. However applications of Al 2O3 are limited owing to its inherent brittleness. Due to its excellent mechanical properties and bending strength, carbon nanotubes (CNT) is an ideal reinforcement for Al2O3 matrix to improve its fracture toughness. The role of CNT dispersion in the fracture toughening of the plasma sprayed Al2O3-CNT nanocomposite coating is discussed in the current work. Pretreatment of powder feedstock is required for dispersing CNTs in the matrix. Four coatings namely spray dried Al2O 3 (A-SD), Al2O3 blended with 4wt.% CNT (A4C-B), composite spray dried Al2O3-4wt.% CNT (A4C-SD) and composite spray dried A1203-8wt.% CNT (A8C-SD), are synthesized by plasma spraying. Owing to extreme temperatures and velocities involved in the plasma spraying of ceramics, retention of CNTs in the resulting coatings necessitates optimizing plasma processing parameters using an inflight particle diagnostic sensor. A bimodal microstructure was obtained in the matrix that consists of fully melted and resolidified structure and solid state sintered structure. CNTs are retained both in the fully melted region and solid-state sintered regions of processed coatings. Fracture toughness of A-SD, A4C-B, A4C-SD and A8C-SD coatings was 3.22, 3.86, 4.60 and 5.04 MPa m1/2 respectively. This affirms the improvement of fracture toughness from 20% (in A4C-B coating) to 43% (in A4C-SD coating) when compared to the A-SD coating because of the CNT dispersion. Fracture toughness improvement from 43% (in A4C-SD) to 57% (in A8C-SD) coating is evinced because of the CNT content. Reinforcement by CNTs is described by its bridging, anchoring, hook formation, impact alignment, fusion with splat, and mesh formation. The Al2O3/CNT interface is critical in assisting the stress transfer and utilizing excellent mechanical properties of CNTs. Mathematical and computational modeling using ab-initio principle is applied to understand the wetting behavior at the Al2O 3/CNT interface. Contrasting storage modulus was obtained by nanoindentation (∼210, 250, 250-350 and 325-420 GPa in A-SD, A4C-B, A4C-SD, and A8C-SD coatings respectively) depicting the toughening associated with CNT content and dispersion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We examined periphyton along transects in five Everglades marshes and related compositional and functional aspects to phosphorus(P ) gradients caused by enriched inflows. Results were compared to those of a P-addition experiment in a pristine Everglades marsh. While the water total P (TP) concentration was not related to P load in the marshes or experiment the concentration of TP in periphyton was strongly correlated with the distance from the P source. Increased P concentration in periphyton was associated with a loss of biomass,p articularly of the calcifying mat-forming matrix, regardless of the growth form of the periphyton (epiphytic, floating,or epilithic). Diatom species composition was also strongly related to P availability, but the TP optima of many species varied among marshes. Enriched periphyton communities were found 14 km downstream of P inputs to one marsh that has been receiving enhanced P loads for decades, where other studies using different biotic indicators show negligible change in the same marsh. Although recovery trajectories are unknown, periphyton indicators should serve as excellent metrics for the progression or amelioration of P-related effects in the Everglades.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the last one hundred years, compartmentalization and water management activities have reduced water flow to the ridge and slough landscape of the Everglades. As a result, the once corrugated landscape has become topographically and vegetationally uniform. The focus of this study was to quantify variation in surface flow in the ridge and slough landscape and to relate flow conditions to particulate transport and deposition. Over the 2002–2003 and 2003–2004 wet seasons, surface velocities and particulate accumulation were measured in upper Shark River Slough in Everglades National Park. Landscape characteristics such as elevation, plant density and biomass also were examined to determine their impact on flow characteristics and material transport. The results of this study demonstrate that the release of water during the wet season not only increases water levels, but also increased flow speeds and particulate transport and availability. Further, flow speeds were positively and significantly correlated with water level thereby enhancing particulate transport in sloughs relative to ridges especially during peak flow periods. Our results also indicate that the distribution of biomass in the water column, including floating plants and periphyton, affects velocity magnitude and shape of vertical profiles, especially in the sloughs where Utricularia spp. and periphyton mats are more abundant. Plot clearing experiments suggest that the presence of surface periphyton and Utricularia exert greater control over flow characteristics than the identity (i.e., sawgrass or spike rush) or density of emergent macrophytes, two parameters frequently incorporated into models describing flow through vegetated canopies. Based on these results, we suggest that future modeling efforts must take the presence of floating biomass, such as Utricularia, and presence of periphyton into consideration when describing particulate transport.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a −1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arsenic is a human carcinogen that has been found in various waters and wines throughout the world. Therefore, close examination of these liquids is necessary to prevent the intoxication of animals and humans. Wines and waters often contain significant amounts of toxic arsenic species. The source of arsenic in wines and waters is generally believed to be the result of arsenic-based pesticides and herbicides. Recent studies have also shown that toxic arsenic may be used in the cultivation and acceleration of the ripening process of fruit, ultimately contaminating fruit-based beverages. The determination of total arsenic can be found by using several methods, including AFS or ICP/MS. No pretreatment of water is necessary, except for filtering by means of a Fisherbrand PTFE 0.45 connected to a Becton-Dickinson 10 mL syringe to filter particles from water. The pretreatment of the wine includes ethanol evaporation and an addition of 0.1% nitric acid. A number of commercial drinking waters and regional lake water were analyzed. Since we have confirmed the presence of arsenic in a variety of waters and wines from different countries, we decided to test a number of commercially available beverages for the presence of arsenic. The focus ofthis project is to establish the presence of arsenic in various commercially available beverages. ICP-MS was used to determine total arsenic using certified standards. Internal standards Indium and Yttrium were also used to verify the concentration readings, which varied from 0- 20 ppb.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fisheries independent data on relatively unstudied nekton communities were used to explore the efficacy of new tools to be applied in the investigation of shallow coastal coral reef habitats. These data obtained through concurrent diver visual and acoustic surveys provided descriptions of spatial community distribution patterns across seasonal temporal scales in a previously undocumented region. Fish density estimates by both diver and acoustic methodologies showed a general agreement in ability to detect distributional patterns across reef tracts, though magnitude of density estimates were different. Fish communities in southeastern Florida showed significant trends in spatial distribution and seasonal abundance, with higher estimates of biomass obtained in the dry season. Further, community composition shifted across reef tracts and seasons as a function of the movements of several key reef species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aluminum oxide (A1203, or alumina) is a conventional ceramic known for applications such as wear resistant coatings, thermal liners, heaters, crucibles, dielectric systems, etc. However applications of A1203 are limited owing to its inherent brittleness. Due to its excellent mechanical properties and bending strength, carbon nanotubes (CNT) is an ideal reinforcement for A1203 matrix to improve its fracture toughness. The role of CNT dispersion in the fracture toughening of the plasma sprayed A1203-CNT nanocomposite coating is discussed in the current work. Pretreatment of powder feedstock is required for dispersing CNTs in the matrix. Four coatings namely spray dried A1203 (A-SD), A1203 blended with 4wt.% CNT (A4C-B), composite spray dried A1203-4wt.% CNT (A4C-SD) and composite spray dried A1203-8wt.% CNT (A8CSD), are synthesized by plasma spraying. Owing to extreme temperatures and velocities involved in the plasma spraying of ceramics, retention of CNTs in the resulting coatings necessitates optimizing plasma processing parameters using an inflight particle diagnostic sensor. A bimodal microstructure was obtained in the matrix that consists of fully melted and resolidified structure and solid state sintered structure. CNTs are retained both in the fully melted region and solid-state sintered regions of processed coatings. Fracture toughness of A-SD, A4C-B, A4C-SD and A8C-SD coatings was 3.22, 3.86, 4.60 and 5.04 MPa m1/2 respectively. This affirms the improvement of fracture toughness from 20 % (in A4C-B coating) to 43% (in A4C-SD coating) when compared to the A-SD coating because of the CNT dispersion. Fracture toughness improvement from 43 % (in A4C-SD) to 57% (in A8C-SD) coating is evinced because of the CNT content. Reinforcement by CNTs is described by its bridging, anchoring, hook formation, impact alignment, fusion with splat, and mesh formation. The A1203/CNT interface is critical in assisting the stress transfer and utilizing excellent mechanical properties of CNTs. Mathematical and computational modeling using ab-initio principle is applied to understand the wetting behavior at the A1203/CNTinterface. Contrasting storage modulus was obtained by nanoindentation (~ 210, 250, 250-350 and 325-420 GPa in A-SD, A4C-B, A4C-SD, and A8C-SD coatings respectively) depicting the toughening associated with CNT content and dispersion.