5 resultados para Potential applications
em Digital Commons at Florida International University
Resumo:
Zinc oxide and graphene nanostructures are important technological materials because of their unique properties and potential applications in future generation of electronic and sensing devices. This dissertation investigates a brief account of the strategies to grow zinc oxide nanostructures (thin film and nanowire) and graphene, and their applications as enhanced field effect transistors, chemical sensors and transparent flexible electrodes. Nanostructured zinc oxide (ZnO) and low-gallium doped zinc oxide (GZO) thin films were synthesized by a magnetron sputtering process. Zinc oxide nanowires (ZNWs) were grown by a chemical vapor deposition method. Field effect transistors (FETs) of ZnO and GZO thin films and ZNWs were fabricated by standard photo and electron beam lithography processes. Electrical characteristics of these devices were investigated by nondestructive surface cleaning, ultraviolet irradiation treatment at high temperature and under vacuum. GZO thin film transistors showed a mobility of ∼5.7 cm2/V·s at low operation voltage of <5 V and a low turn-on voltage of ∼0.5 V with a sub threshold swing of ∼85 mV/decade. Bottom gated FET fabricated from ZNWs exhibit a very high on-to-off ratio (∼106) and mobility (∼28 cm2/V·s). A bottom gated FET showed large hysteresis of ∼5.0 to 8.0 V which was significantly reduced to ∼1.0 V by the surface treatment process. The results demonstrate charge transport in ZnO nanostructures strongly depends on its surface environmental conditions and can be explained by formation of depletion layer at the surface by various surface states. A nitric oxide (NO) gas sensor using single ZNW, functionalized with Cr nanoparticles was developed. The sensor exhibited average sensitivity of ∼46% and a minimum detection limit of ∼1.5 ppm for NO gas. The sensor also is selective towards NO gas as demonstrated by a cross sensitivity test with N2, CO and CO2 gases. Graphene film on copper foil was synthesized by chemical vapor deposition method. A hot press lamination process was developed for transferring graphene film to flexible polymer substrate. The graphene/polymer film exhibited a high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ∼88.80% light transmittance and ∼1.1742Ω/sq k sheet resistance. The application of a graphene/polymer film as a flexible and transparent electrode for field emission displays was demonstrated.
Resumo:
This dissertation studies the context-aware application with its proposed algorithms at client side. The required context-aware infrastructure is discussed in depth to illustrate that such an infrastructure collects the mobile user’s context information, registers service providers, derives mobile user’s current context, distributes user context among context-aware applications, and provides tailored services. The approach proposed tries to strike a balance between the context server and mobile devices. The context acquisition is centralized at the server to ensure the reusability of context information among mobile devices, while context reasoning remains at the application level. Hence, a centralized context acquisition and distributed context reasoning are viewed as a better solution overall. The context-aware search application is designed and implemented at the server side. A new algorithm is proposed to take into consideration the user context profiles. By promoting feedback on the dynamics of the system, any prior user selection is now saved for further analysis such that it may contribute to help the results of a subsequent search. On the basis of these developments at the server side, various solutions are consequently provided at the client side. A proxy software-based component is set up for the purpose of data collection. This research endorses the belief that the proxy at the client side should contain the context reasoning component. Implementation of such a component provides credence to this belief in that the context applications are able to derive the user context profiles. Furthermore, a context cache scheme is implemented to manage the cache on the client device in order to minimize processing requirements and other resources (bandwidth, CPU cycle, power). Java and MySQL platforms are used to implement the proposed architecture and to test scenarios derived from user’s daily activities. To meet the practical demands required of a testing environment without the impositions of a heavy cost for establishing such a comprehensive infrastructure, a software simulation using a free Yahoo search API is provided as a means to evaluate the effectiveness of the design approach in a most realistic way. The integration of Yahoo search engine into the context-aware architecture design proves how context aware application can meet user demands for tailored services and products in and around the user’s environment. The test results show that the overall design is highly effective, providing new features and enriching the mobile user’s experience through a broad scope of potential applications.
Resumo:
Wolbachia pipientis are bacterial endosymbionts carried by millions of invertebrate species, including ~40% of insect species and some filarial nematodes. In insects, basic Wolbachia research has potential applications in controlling vector borne disease. Conversely, Wolbachia of filarial nematodes are causative agents of neglected tropical diseases such as lymphatic filariasis and African river blindness. However, remarkably little is known about how Wolbachia interact with their hosts at the molecular level. Understanding this is important to inform the basis for symbiosis and help prevent human disease. I used a high-throughput proteomics approach to study how Drosophila host cells are modified by Wolbachia infection. This analysis identified 23 Drosophila proteins that significantly changed in amount as a result of Wolbachia infection. A subset of differentially abundant host proteins were consistent with Wolbachia-associated phenotypes reported previously. This study also provides the first ever discovery-based evidence for a Wolbachia-associated change in maternal germline histone loads, which has possible implications in Rescue of a common Wolbachia-induced reproductive manipulation known as Cytoplasmic Incompatibility.
Resumo:
This dissertation studies the context-aware application with its proposed algorithms at client side. The required context-aware infrastructure is discussed in depth to illustrate that such an infrastructure collects the mobile user’s context information, registers service providers, derives mobile user’s current context, distributes user context among context-aware applications, and provides tailored services. The approach proposed tries to strike a balance between the context server and mobile devices. The context acquisition is centralized at the server to ensure the usability of context information among mobile devices, while context reasoning remains at the application level. Hence, a centralized context acquisition and distributed context reasoning are viewed as a better solution overall. The context-aware search application is designed and implemented at the server side. A new algorithm is proposed to take into consideration the user context profiles. By promoting feedback on the dynamics of the system, any prior user selection is now saved for further analysis such that it may contribute to help the results of a subsequent search. On the basis of these developments at the server side, various solutions are consequently provided at the client side. A proxy software-based component is set up for the purpose of data collection. This research endorses the belief that the proxy at the client side should contain the context reasoning component. Implementation of such a component provides credence to this belief in that the context applications are able to derive the user context profiles. Furthermore, a context cache scheme is implemented to manage the cache on the client device in order to minimize processing requirements and other resources (bandwidth, CPU cycle, power). Java and MySQL platforms are used to implement the proposed architecture and to test scenarios derived from user’s daily activities. To meet the practical demands required of a testing environment without the impositions of a heavy cost for establishing such a comprehensive infrastructure, a software simulation using a free Yahoo search API is provided as a means to evaluate the effectiveness of the design approach in a most realistic way. The integration of Yahoo search engine into the context-aware architecture design proves how context aware application can meet user demands for tailored services and products in and around the user’s environment. The test results show that the overall design is highly effective,providing new features and enriching the mobile user’s experience through a broad scope of potential applications.
Resumo:
Hypersonic aerospace vehicles are severely limited by the lack of adequate high temperature materials that can withstand the harsh hypersonic environment. Tantalum carbide (TaC), with a melting point of 3880°C, is an ultrahigh temperature ceramic (UHTC) with potential applications such as scramjet engines, leading edges, and zero erosion nozzles. However, consolidation of TaC to a dense structure and its low fracture toughness are major challenges that make it currently unviable for hypersonic applications. In this study, Graphene NanoPlatelets (GNP) reinforced TaC composites are synthesized by spark plasma sintering (SPS) at extreme conditions of 1850˚C and 80-100 MPa. The addition of GNP improves densification and enhances fracture toughness of TaC by up to ~100% through mechanisms such as GNP bending, sliding, pull-out, grain wrapping, crack bridging, and crack deflection. Also, TaC-GNP composites display improved oxidation behavior over TaC when exposed to a high temperature plasma flow exceeding 2500 ˚C.