4 resultados para Potable water

em Digital Commons at Florida International University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This project studied the frequency and of water contamination at the source, during transportation, and at home to determine the causes of contamination and its impact on the health of children aged 0 to 5 years. The methods used were construction of the infrastructure for three sources of potable water, administration of a questionnaire about socioeconomic status and sanitation behavior, anthropometric measurement of children, and analysis of water and feces. The contamination, first thought to be only a function of rainfall, turned out to be a very complex phenomenon. Water in homes was contaminated (43.4%) with more than 1100 total coliforms/100 ml due to the use of unclean utensils to transport and store water. This socio-economic and cultural problem should be ad- dressed with health education about sanitation, The latrines (found in 43.8% of families) presented a double-edged problem. The extremely high population density reduced the surface area of land per family, which resulted in a severe nutritional deficit (15% of the children) affecting mainly young children, rendering them more susceptible to diarrhea (three episodes/child/year).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increased occurrence of cyanobacteria (blue-green algae) blooms and the production of associated cyanotoxins have presented a threat to drinking water sources. Among the most common types of cyanotoxins found in potable water are microcystins (MCs), a family of cyclic heptapeptides containing substrates. MCs are strongly hepatotoxic and known to initiate tumor promoting activity. The presence of sub-lethal doses of MCs in drinking water is implicated as one of the key risk factors for an unusually high occurrence of primary liver cancer. ^ A variety of traditional water treatment methods have been attempted for the removal of cyanotoxins, but with limited success. Advanced Oxidation Technologies (AOTs) are attractive alternatives to traditional water treatments. We have demonstrated ultrasonic irradiation and UV/H2O2 lead to the degradation of cyanotoxins in drinking water. These studies demonstrate AOTs can effectively degrade MCs and their associated toxicity is dramatically reduced. We have conducted detailed studies of different degradation pathways of MCs and conclude that the hydroxyl radical is responsible for a significant fraction of the observed degradation. Results indicate preliminary products of the sonolysis of MCs are due to the hydroxyl radical attack on the benzene ring and substitution and cleavage of the diene of the Adda peptide residue. AOTs are attractive methods for treatment of cyanotoxins in potable water supplies. ^ The photochemical transformation of MCs is important in the environmental degradation of MCs. Previous studies implicated singlet oxygen as a primary oxidant in the photochemical transformation of MCs. Our results indicate that singlet oxygen predominantly leads to degradation of the phycocyanin, pigments of blue green algae, hence reducing the degradation of MCs. The predominant process involves isomerization of the diene (6E to 6Z) in the Adda side chain via photosensitized isomerization involving the photoexcited phycocyanin. Our results indicate that photosensitized processes play a key role in the environmental fate and elimination of MCs in the natural waters. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The anisotropy of the Biscayne Aquifer which serves as the source of potable water for Miami-Dade County was investigated by applying geophysical methods. Electrical resistivity imaging, self potential and ground penetration radar techniques were employed in both regional and site specific studies. In the regional study, electrical anisotropy and resistivity variation with depth were investigated with azimuthal square array measurements at 13 sites. The observed coefficient of electrical anisotropy ranged from 1.01 to 1.36. The general direction of measured anisotropy is uniform for most sites and trends W-E or SE-NW irrespective of depth. Measured electrical properties were used to estimate anisotropic component of the secondary porosity and hydraulic anisotropy which ranged from 1 to 11% and 1.18 to 2.83 respectively. 1-D sounding analysis was used to models the variation of formation resistivity with depth. Resistivities decreased from NW (close to the margins of the everglades) to SE on the shores of Biscayne Bay. Porosity calculated from Archie's law, ranged from 18 to 61% with higher values found along the ridge. Higher anisotropy, porosities and hydraulic conductivities were on the Atlantic Coastal Ridge and lower values at low lying areas west of the ridge. The cause of higher anisotropy and porosity is attributed to higher dissolution rates of the oolitic facies of the Miami Formation composing the ridge. The direction of minimum resistivity from this study is similar to the predevelopment groundwater flow direction indicated in published modeling studies. Detailed investigations were carried out to evaluate higher anisotropy at West Perrine Park located on the ridge and Snapper Creek Municipal well field where the anisotropy trend changes with depth. The higher anisotropy is attributed to the presence of solution cavities oriented in the E-SE direction on the ridge. Similarly, the change in hydraulic anisotropy at the well field might be related to solution cavities, the surface canal and groundwater extraction wells.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The anisotropy of the Biscayne Aquifer which serves as the source of potable water for Miami-Dade County was investigated by applying geophysical methods. Electrical resistivity imaging, self potential and ground penetration radar techniques were employed in both regional and site specific studies. In the regional study, electrical anisotropy and resistivity variation with depth were investigated with azimuthal square array measurements at 13 sites. The observed coefficient of electrical anisotropy ranged from 1.01 to 1.36. The general direction of measured anisotropy is uniform for most sites and trends W-E or SE-NW irrespective of depth. Measured electrical properties were used to estimate anisotropic component of the secondary porosity and hydraulic anisotropy which ranged from 1 to 11% and 1.18 to 2.83 respectively. 1-D sounding analysis was used to models the variation of formation resistivity with depth. Resistivities decreased from NW (close to the margins of the everglades) to SE on the shores of Biscayne Bay. Porosity calculated from Archie's law, ranged from 18 to 61% with higher values found along the ridge. Higher anisotropy, porosities and hydraulic conductivities were on the Atlantic Coastal Ridge and lower values at low lying areas west of the ridge. The cause of higher anisotropy and porosity is attributed to higher dissolution rates of the oolitic facies of the Miami Formation composing the ridge. The direction of minimum resistivity from this study is similar to the predevelopment groundwater flow direction indicated in published modeling studies. Detailed investigations were carried out to evaluate higher anisotropy at West Perrine Park located on the ridge and Snapper Creek Municipal well field where the anisotropy trend changes with depth. The higher anisotropy is attributed to the presence of solution cavities oriented in the E-SE direction on the ridge. Similarly, the change in hydraulic anisotropy at the well field might be related to solution cavities, the surface canal and groundwater extraction wells.