9 resultados para Portable equipment
em Digital Commons at Florida International University
Resumo:
This dissertation is about the research carried on developing an MPS (Multipurpose Portable System) which consists of an instrument and many accessories. The instrument is portable, hand-held, and rechargeable battery operated, and it measures temperature, absorbance, and concentration of samples by using optical principles. The system also performs auxiliary functions like incubation and mixing. This system can be used in environmental, industrial, and medical applications. ^ Research emphasis is on system modularity, easy configuration, accuracy of measurements, power management schemes, reliability, low cost, computer interface, and networking. The instrument can send the data to a computer for data analysis and presentation, or to a printer. ^ This dissertation includes the presentation of a full working system. This involved integration of hardware and firmware for the micro-controller in assembly language, software in C and other application modules. ^ The instrument contains the Optics, Transimpedance Amplifiers, Voltage-to-Frequency Converters, LCD display, Lamp Driver, Battery Charger, Battery Manager, Timer, Interface Port, and Micro-controller. ^ The accessories are a Printer, Data Acquisition Adapter (to transfer the measurements to a computer via the Printer Port and expand the Analog/Digital conversion capability), Car Plug Adapter, and AC Transformer. This system has been fully evaluated for fault tolerance and the schemes will also be presented. ^
Resumo:
Miniature direct methanol fuel cells (DMFCs) are promising micro power sources for portable appliction. Low temperature cofired ceramic (LTCC), a competitive technology for current MEMS based fabrication, provides cost-effective mass manufacturing route for miniature DMFCs. Porous silver tape is adapted as electrodes to replace the traditional porous carbon electrodes due to its compatibility to LTCC processing and other electrochemical advantages. Electrochemical evaluation of silver under DMFCs operating conditions demonstrated that silver is a good electrode for DMFCs because of its reasonable corrosion resistance, low passivating current, and enhanced catalytic effect. Two catalyst loading methods (cofiring and postfiring) of the platinum and ruthenium catalysts are evaluated for LTCC based processing. The electrochemical analysis exhibits that the cofired path out-performs the postfiring path both at the anode and cathode. The reason is the formation of high surface area precipitated whiskers. Self-constraint sintering is utilized to overcome the difficulties of the large difference of coefficient of thermal expansion (CTE) between silver and LTCC (Dupont 951) tape during cofiring. The graphite sheet employed as a cavity fugitive insert guarantees cavity dimension conservation. Finally, performance of the membrane electrode assembly (MEA) with the porous silver electrode in the regular graphite electrode based cell and the integrated cofired cell is measured under passive fuel feeding condition. The MEA of the regular cell performs better as the electrode porosity and temperature increased. The power density of 10 mWcm-2 was obtained at ambient conditions with 1M methanol and it increased to 16 mWcm -2 at 50°C from an open circuit voltage of 0.58V. For the integrated prototype cell, the best performance, which depends on the balance methanol crossover and mass transfer at different temperatures and methanol concentrations, reaches 1.13 mWcm-2 at 2M methanol solution at ambient pressure. The porous media pore structure increases the methanol crossover resistance. As temperature increased to 60°C, the device increases to 2.14 mWcm-2.
Resumo:
There are situations in which it is very important to quickly and positively identify an individual. Examples include suspects detained in the neighborhood of a bombing or terrorist incident, individuals detained attempting to enter or leave the country, and victims of mass disasters. Systems utilized for these purposes must be fast, portable, and easy to maintain. The goal of this project was to develop an ultra fast, direct PCR method for forensic genotyping of oral swabs. The procedure developed eliminates the need for cellular digestion and extraction of the sample by performing those steps in the PCR tube itself. Then, special high-speed polymerases are added which are capable of amplifying a newly developed 7 loci multiplex in under 16 minutes. Following the amplification, a postage stamp sized microfluidic device equipped with specially designed entangled polymer separation matrix, yields a complete genotype in 80 seconds. The entire process is rapid and reliable, reducing the time from sample to genotype from 1-2 days to under 20 minutes. Operation requires minimal equipment and can be easily performed with a small high-speed thermal-cycler, reagents, and a microfluidic device with a laptop. The system was optimized and validated using a number of test parameters and a small test population. The overall precision was better than 0.17 bp and provided a power of discrimination greater than 1 in 106. The small footprint, and ease of use will permit this system to be an effective tool to quickly screen and identify individuals detained at ports of entry, police stations and remote locations. The system is robust, portable and demonstrates to the forensic community a simple solution to the problem of rapid determination of genetic identity.
Resumo:
Exposure to certain bloodborne pathogens can prematurely end a person’s life. Healthcare workers (HCWs), especially those who are members of surgical teams, are at increased risk of exposure to these pathogens. The proper use of personal protective equipment (PPE) during operative/invasive procedures reduces that risk. Despite this, some HCWs fail to consistently use PPE as required by federal regulation, accrediting agencies, hospital policy, and professional association standards. The purpose of this mixed methods survey study was to (a) examine factors surgical team members perceive influence choices of wearing or not wearing PPE during operative/invasive procedures and (b) determine what would influence consistent use of PPE by surgical team members. Using an ex post facto, non-experimental design, the memberships of five professional associations whose members comprise surgical teams were invited to complete a mixed methods survey study. The primary research question for the study was: What differences (perceptual and demographic) exist between surgical team members that influence their choices of wearing or not wearing PPE during operative/invasive procedures? Four principal differences were found between surgical team members. Functional (i.e., profession or role based) differences exist between the groups. Age and experience (i.e., time in profession) differences exist among members of the groups. Finally, being a nurse anesthetist influences the use of risk assessment to determine the level of PPE to use. Four common themes emerged across all groups informing the two study purposes. Those themes were: availability, education, leadership, and performance. Subsidiary research questions examined the influence of previous accidental exposure to blood or body fluids, federal regulations, hospital policy and procedure, leaders’ attitudes, and patients’ needs on the use of PPE. Each of these was found to strongly influence surgical team members and their use of PPE during operative/invasive procedures. Implications based on the findings affect organizational policy, purchasing and distribution decisions, curriculum design and instruction, leader behavior, and finally partnership with PPE manufacturers. Surgical team members must balance their innate need to care for patients with their need to protect themselves. Results of this study will help team members, leaders, and educators achieve this balance.
Resumo:
What is the architecture of transience? What role does architecture play in the impermanent context of the nomad? What form does architecture take when our perception of shelter transforms from fixed and static to flexible and transportable? How does architecture react to the challenges of mobility and change? Traditional building forms speak of stability as an important aspect of architecture. Does portability imply a different building form? During the1950s Buckminister Fuller introduced the idea of mobile, portable structures. In the 1960s Archigrams' examples of architectural nomadism made the mobile home an accepted feature of our contemporary landscape. Currently, new materials and new methods of assembly and transportation open opportunities for rethinking portable architecture. For this thesis, a shelter was developed which provides inhabitable space and portability. The shelter was designed to be easily carried as a backpack. With minimum human effort, the structure is assembled and erected in a few minutes. Although this portable shelter needs to be maneuvered, folded and tucked away for transportation, it does meet the demands of nomadic behavior which emphasizes comfort and portability.
Resumo:
The electronics industry, is experiencing two trends one of which is the drive towards miniaturization of electronic products. The in-circuit testing predominantly used for continuity testing of printed circuit boards (PCB) can no longer meet the demands of smaller size circuits. This has lead to the development of moving probe testing equipment. Moving Probe Test opens up the opportunity to test PCBs where the test points are on a small pitch (distance between points). However, since the test uses probes that move sequentially to perform the test, the total test time is much greater than traditional in-circuit test. While significant effort has concentrated on the equipment design and development, little work has examined algorithms for efficient test sequencing. The test sequence has the greatest impact on total test time, which will determine the production cycle time of the product. Minimizing total test time is a NP-hard problem similar to the traveling salesman problem, except with two traveling salesmen that must coordinate their movements. The main goal of this thesis was to develop a heuristic algorithm to minimize the Flying Probe test time and evaluate the algorithm against a "Nearest Neighbor" algorithm. The algorithm was implemented with Visual Basic and MS Access database. The algorithm was evaluated with actual PCB test data taken from Industry. A statistical analysis with 95% C.C. was performed to test the hypothesis that the proposed algorithm finds a sequence which has a total test time less than the total test time found by the "Nearest Neighbor" approach. Findings demonstrated that the proposed heuristic algorithm reduces the total test time of the test and, therefore, production cycle time can be reduced through proper sequencing.
Resumo:
A man-machine system called teleoperator system has been developed to work in hazardous environments such as nuclear reactor plants. Force reflection is a type of force feedback in which forces experienced by the remote manipulator are fed back to the manual controller. In a force-reflecting teleoperation system, the operator uses the manual controller to direct the remote manipulator and receives visual information from a video image and/or graphical animation on the computer screen. This thesis presents the design of a portable Force-Reflecting Manual Controller (FRMC) for the teleoperation of tasks such as hazardous material handling, waste cleanup, and space-related operations. The work consists of the design and construction of a prototype 1-Degree-of-Freedom (DOF) FRMC, the development of the Graphical User Interface (GUI), and system integration. Two control strategies - PID and fuzzy logic controllers are developed and experimentally tested. The system response of each is analyzed and evaluated. In addition, the concept of a telesensation system is introduced, and a variety of design alternatives of a 3-DOF FRMC are proposed for future development.
Resumo:
Exposure to certain bloodborne pathogens can prematurely end a person’s life. Healthcare workers (HCWs), especially those who are members of surgical teams, are at increased risk of exposure to these pathogens. The proper use of personal protective equipment (PPE) during operative/invasive procedures reduces that risk. Despite this, some HCWs fail to consistently use PPE as required by federal regulation, accrediting agencies, hospital policy, and professional association standards. The purpose of this mixed methods survey study was to (a) examine factors surgical team members perceive influence choices of wearing or not wearing PPE during operative/invasive procedures and (b) determine what would influence consistent use of PPE by surgical team members. Using an ex post facto, non-experimental design, the memberships of five professional associations whose members comprise surgical teams were invited to complete a mixed methods survey study. The primary research question for the study was: What differences (perceptual and demographic) exist between surgical team members that influence their choices of wearing or not wearing PPE during operative/invasive procedures? Four principal differences were found between surgical team members. Functional (i.e., profession or role based) differences exist between the groups. Age and experience (i.e., time in profession) differences exist among members of the groups. Finally, being a nurse anesthetist influences the use of risk assessment to determine the level of PPE to use. Four common themes emerged across all groups informing the two study purposes. Those themes were: availability, education, leadership, and performance. Subsidiary research questions examined the influence of previous accidental exposure to blood or body fluids, federal regulations, hospital policy and procedure, leaders’ attitudes, and patients’ needs on the use of PPE. Each of these was found to strongly influence surgical team members and their use of PPE during operative/invasive procedures. Implications based on the findings affect organizational policy, purchasing and distribution decisions, curriculum design and instruction, leader behavior, and finally partnership with PPE manufacturers. Surgical team members must balance their innate need to care for patients with their need to protect themselves. Results of this study will help team members, leaders, and educators achieve this balance.
Resumo:
The purpose of this research was to explore a new way of experiencing a performance space using the portability and flexibility of a cargo container. Since the 17th century there has been a split between theater, as a written work, and architecture. Theater has lost its founding essence becoming more about the structure and less about the performance. Contemporary theater designs came through the development of street performances, which developed into theater types such as the Black Box and lately video and projection screening. With the exploration of kinetic uses in architecture and defragmentation of a cargo container there is a new step on the development of theater design. Using a cargo container gave me a familiar object with specific dimensions to start my exploration as well as the possibility of having the theater transported to many sites. The findings demonstrate that there are many unexplored possibilities to create a performance space outside the conventional theater that can promote new types of performances as well as the use of new technologies of video and projection.