7 resultados para Ponds.

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Swamp-breeding treefrogs form conspicuous components of many tropical forest sites, yet remain largely understudied. The La Selva Biological Station, a rainforest reserve in Costa Rica, harbors a rich swamp-breeding treefrog fauna that has been studied in only one of the many swamps found at the site. To understand if the species composition of treefrogs at La Selva varies over space or time, frogs were censused in 1982-83, 1994-95, 2005 and 2011 at two ponds located in the reserve. Data on treefrog habitat utilization were also collected. Species composition varied spatially only in 2011. Temporal variation was observed at both ponds for all groups tested. Habitat use varied among species and between swamps. The pattern of variation suggests that temporally dynamic systems such as temporary Neotropical forest swamps will converge and diverge in species composition over time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our main goal was to determine if fish distribution and adundance in temporary wetlands were shaped primarily by large-scale (landscape) or small-scale (local) characteristics and to investigate the influence of cattle ranching on fish assemblages. A total of 24 temporary ponds were selected at the Kissimmee Prairie Sanctuary and the Mac- Arthur Agro-Ecology Research Center. Each wetland was sampled for fish using throw traps and dip nets during 1999. Landscape processes (connectivity to permanent water bodies) predominately influenced fish assemblages, although local processes (depth–hydroperiod) were also important. Furthermore, no colonizing species went locally extinct before wetlands began to dry. Our findings suggest that large-scale processes that influence colonization dynamics are of more importance than small-scale processes that influence extinction dynamics. Finally, hydrological changes (ditching) associated with agriculture (cattle ranching) have adversely affected temporary wetland fish assemblages by reducing wetland hydroperiods and connectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using high-resolution measures of aquatic ecosystem metabolism and water quality, we investigated the importance of hydrological inputs of phosphorus (P) on ecosystem dynamics in the oligotrophic, P-limited coastal Everglades. Due to low nutrient status and relatively large inputs of terrestrial organic matter, we hypothesized that the ponds in this region would be strongly net heterotrophic and that pond gross primary production (GPP) and respiration (R) would be the greatest during the “dry,” euhaline estuarine season that coincides with increased P availability. Results indicated that metabolism rates were consistently associated with elevated upstream total phosphorus and salinity concentrations. Pulses in aquatic metabolism rates were coupled to the timing of P supply from groundwater upwelling as well as a potential suite of hydrobiogeochemical interactions. We provide evidence that freshwater discharge has observable impacts on aquatic ecosystem function in the oligotrophic estuaries of the Florida Everglades by controlling the availability of P to the ecosystem. Future water management decisions in South Florida must include the impact of changes in water delivery on downstream estuaries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Refuge habitats increase survival rate and recovery time of populations experiencing environmental disturbance, but limits on the ability of refuges to buffer communities are poorly understood. We hypothesized that importance of refuges in preventing population declines and alteration in community structure has a non-linear relationship with severity of disturbance. In the Florida Everglades, alligator ponds are used as refuge habitat by fishes during seasonal drying of marsh habitats. Using an 11-year record of hydrological conditions and fish abundance in 10 marshes and 34 alligator ponds from two regions of the Everglades, we sought to characterize patterns of refuge use and temporal dynamics of fish abundance and community structure across changing intensity, duration, and frequency of drought disturbance. Abundance in alligator ponds was positively related to refuge size, distance from alternative refugia (e.g. canals), and abundance in surrounding marsh prior to hydrologic disturbance. Variables negatively related to abundance in alligator ponds included water level in surrounding marsh and abundance of disturbance-tolerant species. Refuge community structure did not differ between regions because the same subset of species in both regions used alligator ponds during droughts. When time between disturbances was short, fish abundance declined in marshes, and in the region with the most spatially extensive pattern of disturbance, community structure was altered in both marshes and alligator ponds because of an increased proportion of species more resistant to disturbance. These changes in community structure were associated with increases in both duration and frequency of hydrologic disturbance. Use of refuge habitat had a modal relationship with severity of disturbance regime. Spatial patterns of response suggest that decline in refuge use was because of decreased effectiveness of refuge habitat in reducing mortality and providing sufficient time for recovery for fish communities experiencing reduced time between disturbance events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Comprehensive Everglades Restoration includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the Southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The effect of altered hydrologic regime on the transport dynamics of flocculent, estuarine detritus is not well understood. We utilized a paramagnetic sediment tracer to examine detrital transport in three Taylor River pond/creek pairs during early wet versus late wet transition season estuarine flow conditions. Flux of floc tracer was greatest in the downstream direction during all observations, and was most pronounced during the early wet season, coincident with shallower water depth and faster discharge from northern Taylor River. Floc tracer was more likely to move upriver during the late wet/dry season. We observed a floc tracer transport velocity of approximately 1.74 to 1.78 m/day across both seasonal hydrologic conditions. Tracer dynamics were also surprisingly site-dependent, which may highlight the importance of channel geomorphology in regulating hydrologic and sediment transport conditions. Our data suggest that restoration of surface water delivery to Taylor River will influence downstream loading of detritus material into riverine ponds. These detrital inputs have the potential to enhance ecosystem primary productivity and/or secondary productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecosystem management practices that modify the major drivers and stressors of an ecosystem often lead to changes in plant community composition. This paper examines how closely the trajectory of vegetation change in seasonally-flooded wetlands tracks management-induced alterations in hydrology and soil characteristics. We used trajectory analysis, a multivariate method designed to test hypotheses about rates and directions of community change, to examine vegetation shifts in response to changes in water management practices within the Taylor Slough basin of Everglades National Park. We summarized vegetation data by non-metric multidimensional scaling ordination, and examined the time trajectory of each site along environmental vectors representing hydrology and soil phosphorus gradients. In the Taylor Slough basin, vegetation change trajectories closely followed the hydrologic changes caused by the operation of water pumps and detention ponds adjacent to the canals. We also observed a shift in vegetation composition along a vector of increasing soil phosphorus, which suggests the need for implementing measures to avoid P-enrichment in southern Everglades marl prairies. This study indicates that shifts in vegetation composition in response to changes in hydrologic conditions and associated parameters may be detected through trajectory analysis, thereby providing feedback for adaptive management of wetland ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the Wayuu of the Guajira Peninsula of northern Colombia, water procurement has historically been challenging. The ancestral territory of this indigenous pastoral society is windy and arid, with low rainfall, high temperatures and an absence of perennial rivers or streams. In the past, the Wayuu adapted to these environmental conditions by practicing transhumance during the prolonged dry seasons, digging spring wells and artificial ponds and by following guiding principles for water usage. Since the 1930s, the government has made efforts to build additional wind-powered wells and ponds for a growing native population. Notwithstanding, these water solutions have only partly met the necessities; public water sources are limited or unreliable and few attempts are made to generate safe drinking water. Furthermore, the ubiquitous practice of animal husbandry places added pressure on existing sources; livestock consume more water than the human populations in the areas visited. Rapid assessments in four Wayuu areas on the peninsula were conducted by the author and an interdisciplinary team working for the Cerrejón Foundation for Water in La Guajira from 2010 to 2013. The assessments were part of a larger pilot project to design and implement a sustainability plan for reservoir-based water supply systems in the region. This study brings cultural practices and local knowledge to the forefront as key elements for the success of water works and other development projects carried out in Wayuu territory.