2 resultados para Polyunsaturated Fatty-acids
em Digital Commons at Florida International University
Resumo:
The degree of reliance of newborn sharks on energy reserves from maternal resource allocation and the timescales over which these animals develop foraging skills are critical factors towards understanding the ecological role of top predators in marine ecosystems. We used muscle tissue stable carbon isotopic composition and fatty acid analysis of bull sharks Carcharhinus leucas to investigate early-life feeding ecology in conjunction with maternal resource dependency. Values of δ13C of some young-of-the-year sharks were highly enriched, reflecting inputs from the marine-based diet and foraging locations of their mothers. This group of sharks also contained high levels of the 20:3ω9 fatty acid, which accumulates during periods of essential fatty acid deficiency, suggesting inadequate or undeveloped foraging skills and possible reliance on maternal provisioning. A loss of maternal signal in δ13C values occurred at a length of approximately 100 cm, with muscle tissue δ13C values reflecting a transition from more freshwater/estuarine-based diets to marine-based diets with increasing length. Similarly, fatty acids from sharks >100 cm indicated no signs of essential fatty acid deficiency, implying adequate foraging. By combining stable carbon isotopes and fatty acids, our results provided important constraints on the timing of the loss of maternal isotopic signal and the development of foraging skills in relation to shark size and imply that molecular markers such as fatty acids are useful for the determination of maternal resource dependency.
Resumo:
Background: Omega-3 fatty acids (n-3) may be protective of cardiovascular risk factors for vulnerable populations. The purpose of this study was to assess the association between n-3 with, C-reactive protein (CRP), and homocysteine (HCY) in Black minorities with and without type 2 diabetes. Methods: A cross-sectional study was conducted with 406 participants: Haitian Americans (HA): n=238. African Americans (AA): n=172. Participants were recruited from a randomly generated mailing lists, local diabetes educators, community health practitioners and advertisements from 2008-2010. Sociodemographics and anthropometrics were collected and used to adjust analyses. All dietary variables were collected using the semi-quantitative food frequency questionnaire (FFQ) and used to quantify vitamin components. Blood was collected to measure CVD risk factors (blood lipids, HCY, and CRP). Results: African Americans had higher waist circumferences and C-reactive protein and consumed more calories as compared to Haitian Americans. Omega 3 fatty acid intake per calorie did not differ between these ethnicities, yet African Americans with low n-3 intake were three times more likely to have high C-reactive protein as compared to their counterparts [OR=3. 32 (1. 11, 9. 26) p=0.031]. Although homocysteine did not differ by ethnicity, African Americans with low omega 3 intake (<1 g/day) were four times as likely to have high homocysteine (>12 mg/L) as compared to their counterparts, adjusting for confounders [OR=4.63 (1.59, 12.0) p=0.004]. Consumption of n-3 by diabetes status was not associated with C-reactive protein or homocysteine levels. Conclusions: Consumption of n-3 may be protective of cardiovascular risk factors such as C-r