4 resultados para Polypropylene modified with maleic anhydride

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gemcitabine (2', 2'-difluoro-2'-deoxycytidine or dFdC) has become a standard chemotherapeutic agent in the treatment of several cellular and solid tumor- related malignancies. Gemcitabine's anti-cancer activity has been attributed to its inhibitory effects on the cell's DNA synthetic machinery resulting in the induction of cell arrest and apoptosis. Despite its broad application, treatment capacity with this drug is limited due to complicated administration schedules stemming from low bioavailability and tumor resistance associated with its rampant intracellular enzymatic inactivation. The aim of this study is to characterize the anti-cancer activity of novel designed and synthesized gemcitabine analogues, that were modified with long alkyl chains at the 4-amino group of the cytosine ring. This study proposes the use of these alternative derivatives of gemcitabine that not only uphold current drug standards for potency, but additionally confer chemical stability against enzymatic inactivation. During screening conducted to identifY prospective gem-analogue candidates, I observed the potent anticancer properties ofthree 4-N modified compounds on MCF-7 breast adenocarcinoma cells. Experiments described here with these compounds referred to as LCO, LCAO, and Gvaldo, evaluate their cytotoxicity on MCF-7 cells at the concentrations of 25flM and 2.5flM, and assess their inhibitory effects on DNA synthesis and cell cycle progression using sulphorhodamine B and bromodeoxyuridine assays as well as flow cytometric analyses, respectively. Among the compounds tested, LCO was shown to be most active inhibitor of DNA synthesis (a=.05; p<.OOl) as reflected as a distinct GO/Gl versus S-phase arrest in the 25flM and 2.5flM treatments, respectively. Together, these experiments provide preliminary evidence for the clinical application of LCO-like gemcitabine derivatives as a novel treatment for breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver cancer accounts for nearly 10% of all cancers in the US. Intrahepatic Arterial Radiomicrosphere Therapy (RMT), also known as Selective Internal Radiation Treatment (SIRT), is one of the evolving treatment modalities. Successful patient clinical outcomes require suitable treatment planning followed by delivery of the microspheres for therapy. The production and in vitro evaluation of various polymers (PGCD, CHS and CHSg) microspheres for a RMT and RMT planning are described. Microparticles with a 30±10 µm size distribution were prepared by emulsion method. The in vitro half-life of the particles was determined in PBS buffer and porcine plasma and their potential application (treatment or treatment planning) established. Further, the fast degrading microspheres (≤ 48 hours in vitro half-life) were labeled with 68Ga and/or 99mTc as they are suitable for the imaging component of treatment planning, which is the primary emphasis of this dissertation. Labeling kinetics demonstrated that 68Ga-PGCD, 68Ga-CHSg and 68Ga-NOTA-CHSg can be labeled with more than 95% yield in 15 minutes; 99mTc-PGCD and 99mTc-CHSg can also be labeled with high yield within 15-30 minutes. In vitro stability after four hours was more than 90% in saline and PBS buffer for all of them. Experiments in reconstituted hemoglobin lysate were also performed. Two successful imaging (RMT planning) agents were found: 99mTc-CHSg and 68Ga-NOTA-CHSg. For the 99mTc-PGCD a successful perfusion image was obtained after 10 minutes, however the in vivo degradation was very fast (half-life), releasing the 99mTc from the lungs. Slow degrading CHS microparticles (> 21 days half-life) were modified with p-SCN-b-DOTA and labeled with 90 Y for production of 90Y-DOTA-CHS. Radiochemical purity was evaluated in vitro and in vivo showing more than 90% stability after 72 and 24 hours respectively. All agents were compared to their respective gold standards (99mTc-MAA for 68Ga-NOTA-CHSg and 99m Tc-CHSg; 90Y-SirTEX for 90Y-DOTA-CHS) showing superior in vivo stability. RMT and RMT planning agents (Therapy, PET and SPECT imaging) were designed and successfully evaluated in vitro and in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid detection and neutralization method for biowarfare agents would be a great biodefense in war times. With this purpose, liposomes were developed following the lipid film formation, rehydration, and extrusion procedure as the production method. MgOCl2 was encapsulated in the liposomes and it was tested with three different bacterium B. cereus; B. thuringiensis; and B. subtilis. For specificity, the liposomes were modified with a polyclonal antibody against B. cereus and B. subtilis. The liposomes were characterized using a Malvern Zetasizer Instrument, and the study revealed stability of the liposomes stored at 4°C for a period of 15 days. A live/dead assay revealed a significant reduction of bacterium incubated with MgOCl2-liposomes. Smaller reduction percentages, but yet significant, were observed with the MgOCl2-immunoliposomes. A colony growth assay revealed a significant reduction percentage for empty liposomes, MgOCl2-liposomes, and MgOCl2-immunoliposomes incubated with B. thuringiensis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of capillary electrophoresis (CE) has been restricted to applications having high sample concentrations because of its low sensitivity caused by small injection volumes and, when ultraviolet (UV) detection is used, the short optical path length. Sensitivity in CE can be improved by using more sensitive detection systems, or by preconcentration techniques which are based on chromatographic and/or electrophoretic principles. One of the promising strategies to improve sensitivity is solid phase extraction (SPE). Solid Phase Extraction utilizes high sample volumes and a variety of complex matrixes to facilitate trace detection. To increase the specificity of the SPE a selective solid phase must be chosen. Immunosorbents, which are a combination of an antibody and a solid support, have proven to be an excellent option because of high selectivity of the antibody. This thesis is an exploratory study of the application of immunosorbent-SPE combined with CE for trace concentration of benzodiazepines. This research describes the immobilization and performance evaluation of an immunosorbent prepared by immobilizing a benzodiazepine-specific antibody on aminopropyl silica. The binding capacity of the immunosorbent, measured as µg of benzodiazepine/ gram of immunosorbent, was 39 ± 10. The long term stability of the prepared immunosorbent has been improved by capping the remaining aminopropyl groups by reaction with acetic anhydride. The capped immunosorbent retained its binding capacity after several uses.