11 resultados para Point-charge Model
em Digital Commons at Florida International University
Resumo:
This study analyzed the health and overall landcover of citrus crops in Florida. The analysis was completed using Landsat satellite imagery available free of charge from the University of Maryland Global Landcover Change Facility. The project hypothesized that combining citrus production (economic) data with citrus area per county derived from spectral signatures would yield correlations between observable spectral reflectance throughout the year, and the fiscal impact of citrus on local economies. A positive correlation between these two data types would allow us to predict the economic impact of citrus using spectral data analysis to determine final crop harvests.
Resumo:
The freshman year is the most critical year of matriculation for students in higher education. One in four freshman students drops out of higher education after the first year. In fact, the first two to six weeks of college represent a very critical transition period when students make the decision to persist or depart from the institution. Many students leave because they are unable to make a connection with the institution. Retention is often profoundly affected by student involvement in the academic environment, satisfaction with the campus climate and the institution's response to diversity. Therefore, the purpose of this study was to examine and evaluate an effective institutional response that promotes freshman retention and academic success. The tenets (diversity training, conflict management, and community building) of a mentoring model were applied to the freshman experience seminar class (experimental group) as a pedagogical method of instruction to determine its efficacy as a retention initiative when compared with the traditional freshman experience seminar class (comparison group). ^ The quantitative study employed a quasi-experimental research design based on Astin's (1993) I-E-O model. The model examined the relationships between the characteristics students bring with them to college, called inputs, their experiences in the environment during college, and the outcomes students achieved during matriculation. Fifty-two students enrolled in the freshman seminar class participated in the study. ^ Demographic data and input variables between groups were analyzed using chi-square, t-tests and multivariate analyses. Overall, students in the experimental group had significantly higher satisfaction (campus climate) scores than the comparison group. An analysis of the students' willingness to interact with others from diverse groups indicated a significant difference between groups, with the experimental group scoring higher than the comparison group. Students in the experimental group were significantly more involved in campus activities than students in the comparison group. No significant differences were found between groups relative to the mean grade point average and re-enrollment for fall semester 2001. ^ While the mentoring model did not directly affect re-enrollment of students, the model did promote student satisfaction with the institution, an appreciation for diversity of contact and it encouraged involvement in the campus community. These are all essential outcomes of a quality retention program. ^
Resumo:
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.
Resumo:
An integrated flow and transport model using MIKE SHE/MIKE 11 software was developed to predict the flow and transport of mercury, Hg(II), under varying environmental conditions. The model analyzed the impact of remediation scenarios within the East Fork Poplar Creek watershed of the Oak Ridge Reservation with respect to downstream concentration of mercury. The numerical simulations included the entire hydrological cycle: flow in rivers, overland flow, groundwater flow in the saturated and unsaturated zones, and evapotranspiration and precipitation time series. Stochastic parameters and hydrologic conditions over a five year period of historical hydrological data were used to analyze the hydrological cycle and to determine the prevailing mercury transport mechanism within the watershed. Simulations of remediation scenarios revealed that reduction of the highly contaminated point sources, rather than general remediation of the contaminant plume, has a more direct impact on downstream mercury concentrations.
Resumo:
The accurate and reliable estimation of travel time based on point detector data is needed to support Intelligent Transportation System (ITS) applications. It has been found that the quality of travel time estimation is a function of the method used in the estimation and varies for different traffic conditions. In this study, two hybrid on-line travel time estimation models, and their corresponding off-line methods, were developed to achieve better estimation performance under various traffic conditions, including recurrent congestion and incidents. The first model combines the Mid-Point method, which is a speed-based method, with a traffic flow-based method. The second model integrates two speed-based methods: the Mid-Point method and the Minimum Speed method. In both models, the switch between travel time estimation methods is based on the congestion level and queue status automatically identified by clustering analysis. During incident conditions with rapidly changing queue lengths, shock wave analysis-based refinements are applied for on-line estimation to capture the fast queue propagation and recovery. Travel time estimates obtained from existing speed-based methods, traffic flow-based methods, and the models developed were tested using both simulation and real-world data. The results indicate that all tested methods performed at an acceptable level during periods of low congestion. However, their performances vary with an increase in congestion. Comparisons with other estimation methods also show that the developed hybrid models perform well in all cases. Further comparisons between the on-line and off-line travel time estimation methods reveal that off-line methods perform significantly better only during fast-changing congested conditions, such as during incidents. The impacts of major influential factors on the performance of travel time estimation, including data preprocessing procedures, detector errors, detector spacing, frequency of travel time updates to traveler information devices, travel time link length, and posted travel time range, were investigated in this study. The results show that these factors have more significant impacts on the estimation accuracy and reliability under congested conditions than during uncongested conditions. For the incident conditions, the estimation quality improves with the use of a short rolling period for data smoothing, more accurate detector data, and frequent travel time updates.
Resumo:
Personality has long been linked to performance. Evolutions in this relationship have brought forward new questions regarding the true nature of how personality impacts performance. Both direct and indirect relationships have been proven significant. This study further investigated potential indirect relationships by including a mediating variable, mental model formation, in the personality-performance relationship. Undergraduate students were assessed in a 6-week period, Time 1 - Time 2 experiment. Conceptualizations of personality included measures of the Big 5 model and Self-efficacy, with performance measured by content quiz and overall course scores. Findings showed that the Big 5 personality traits, extraversion and agreeableness, positively and significantly impacted commonality with the instructor's mental model. However, commonality with the instructor's mental model did not impact performance. In comparison, commonality with an expert mental model positively and significantly impacted performance for both the content quiz and overall course score. Furthermore, similarity with an expert mental model positively and significantly impacted overall course performance. Hypothesized full mediation of mental model formation for the personality-performance relationship was not supported due to a lack of direct effect relationships required for mediation. However, a revised conceptualization of results emerged. Findings from the current study point to the novel and unique role mental models play in the personality-performance relationship. While personality traits do impact mental model formation, accuracy in the mental models formed is critical to performance.
Resumo:
Aim: to determine cut off points for The Homeostatic Model Assessment Index 1 and 2 (HOMA-1 and HOMA-2) for identifying insulin resistance and metabolic syndrome among a Cuban-American population. Study Design: Cross sectional. Place and Duration of Study: Florida International University, Robert Stempel School of Public Health and Social Work, Department of Dietetics and Nutrition, Miami, FL from July 2010 to December 2011. Methodology: Subjects without diabetes residing in South Florida were enrolled (N=146, aged 37 to 83 years). The HOMA1-IR and HOMA2-IR 90th percentile in the healthy group (n=75) was used as the cut-off point for insulin resistance. A ROC curve was constructed to determine the cut-off point for metabolic syndrome. Results: HOMA1-IR was associated with BMI, central obesity, and triglycerides (P3.95 and >2.20 and for metabolic syndrome were >2.98 (63.4% sensitivity and 73.3% specificity) and >1.55 (60.6% sensitivity and 66.7% specificity), respectively. Conclusion: HOMA cut-off points may be used as a screening tool to identify insulin resistance and metabolic syndrome among Cuban-Americans living in South Florida.
Resumo:
The aim of this study was to develop a practical, versatile and fast dosimetry and radiobiological model for calculation of the 3D dose distribution and radiobiological effectiveness of radioactive stents. The algorithm was written in Matlab 6.5 programming language and is based on the dose point kernel convolution. The dosimetry and radiobiological model was applied for evaluation of the 3D dose distribution of 32P, 90Y, 188Re and 177Lu stents. Of the four, 32P delivers the highest dose, while 90Y, 188Re and 177Lu require high levels of activity to deliver a significant therapeutic dose in the range of 15-30 Gy. Results of the radiobiological model demonstrated that the same physical dose delivered by different radioisotopes produces significantly different radiobiological effects. This type of theoretical dose calculation can be useful in the development of new stent designs, the planning of animal studies and clinical trials, and clinical decisions involving individualized treatment plans.
Resumo:
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.
Resumo:
An integrated flow and transport model using MIKE SHE/MIKE 11 software was developed to predict the flow and transport of mercury, Hg(II), under varying environmental conditions. The model analyzed the impact of remediation scenarios within the East Fork Poplar Creek watershed of the Oak Ridge Reservation with respect to downstream concentration of mercury. The numerical simulations included the entire hydrological cycle: flow in rivers, overland flow, groundwater flow in the saturated and unsaturated zones, and evapotranspiration and precipitation time series. Stochastic parameters and hydrologic conditions over a five year period of historical hydrological data were used to analyze the hydrological cycle and to determine the prevailing mercury transport mechanism within the watershed. Simulations of remediation scenarios revealed that reduction of the highly contaminated point sources, rather than general remediation of the contaminant plume, has a more direct impact on downstream mercury concentrations.
Resumo:
Personality has long been linked to performance. Evolutions in this relationship have brought forward new questions regarding the true nature of how personality impacts performance. Both direct and indirect relationships have been proven significant. This study further investigated potential indirect relationships by including a mediating variable, mental model formation, in the personality-performance relationship. Undergraduate students were assessed in a 6-week period, Time 1 - Time 2 experiment. Conceptualizations of personality included measures of the Big 5 model and Self-efficacy, with performance measured by content quiz and overall course scores. Findings showed that the Big 5 personality traits, extraversion and agreeableness, positively and significantly impacted commonality with the instructor’s mental model. However, commonality with the instructor’s mental model did not impact performance. In comparison, commonality with an expert mental model positively and significantly impacted performance for both the content quiz and overall course score. Furthermore, similarity with an expert mental model positively and significantly impacted overall course performance. Hypothesized full mediation of mental model formation for the personality-performance relationship was not supported due to a lack of direct effect relationships required for mediation. However, a revised conceptualization of results emerged. Findings from the current study point to the novel and unique role mental models play in the personality-performance relationship. While personality traits do impact mental model formation, accuracy in the mental models formed is critical to performance.