5 resultados para Plant pests and diseases

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isla del Coco (Cocos Island) is a small volcanic island located in the Pacific 500 km west of Costa Rica. Three collecting trips to Isla del Coco, in addition to herbarium research, were completed in order to assess the floristic diversity of the island. The current flora of Isla del Coco contains 262 plant species of which 37 (19.4%) are endemic. This study reports 58 species as new to the island. Seventy-one species (27.1%) were identified as introduced by humans. In addition, five potentially invasive plant species are identified. Seven vegetation types are identified on the island: bayshore, coastal cliff, riparian, low elevation humid forest, high elevation cloud forest, landslide and islet. ^ The biogeographic affinities of the native and endemic species are with Central America/northern South America and to a lesser extent, the Caribbean. Endemic species in the genus Epidendrum were investigated to determine whether an insular radiation event had produced two species found on Isla del Coco. Phylogenetic analysis of the internal transcribed spacer (ITS) of nuclear ribosomal DNA was not able to disprove that the endemic species in this genus are not sister species. Molecular biogeographic analyses of ITS sequence data determined that the Isla del Coco endemic species in the genera Epidendrum, Pilea and Psychotria are most closely related to Central American/northern South American taxa. No biogeographical links were found between the floras of Isla del Coco and the Galápagos Islands. ^ The native and endemic plant diversity of Isla del Coco is threatened with habitat degradation by introduced pigs and deer, and to a lesser extent, by exotic plant species. The IUCN Red List and RAREplants criteria were used to assess the extinction threat for the 37 endemic plant taxa found on the island. All of the endemic species are considered threatened with extinction at the Critically Endangered (CR) by the IUCN criteria or either CR or Endangered (EN) using RAREplants methodology. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Oxygen and sulphide dynamics were examined, using microelectrode techniques, in meristems and rhizomes of the seagrass Thalassia testudinum at three different sites in Florida Bay, and in the laboratory, to evaluate the potential role of internal oxygen variability and sulphide invasion in episodes of sudden die-off. The sites differed with respect to shoot density and sediment composition, with an active die-off occurring at only one of the sites. 2 Meristematic oxygen content followed similar diel patterns at all sites with high oxygen content during the day and hyposaturation relative to the water column during the night. Minimum meristematic oxygen content was recorded around sunrise and varied among sites, with values close to zero at the die-off site. 3 Gaseous sulphide was detected within the sediment at all sites but at different concentrations among sites and within the die-off site. Spontaneous invasion of sulphide into Thalassia rhizomes was recorded at low internal oxygen partial pressure during darkness at the die-off site. 4 A laboratory experiment showed that the internal oxygen dynamics depended on light availability, and hence plant photosynthesis, and on the oxygen content of the water column controlling passive oxygen diffusion from water column to leaves and belowground tissues in the dark. 5 Sulphide invasion only occurred at low internal oxygen content, and the rate of invasion was highly dependent on the oxygen supply to roots and rhizomes. Sulphide was slowly depleted from the tissues when high oxygen partial pressures were re-established through leaf photosynthesis. Coexistence of sulphide and oxygen in the tissues and the slow rate of sulphide depletion suggest that sulphide reoxidation is not biologically mediated within the tissues of Thalassia. 6 Our results support the hypothesis that internal oxygen stress, caused by low water column oxygen content or poor plant performance governed by other environmental factors, allows invasion of sulphide and that the internal plant oxygen and sulphide dynamics potentially are key factors in the episodes of sudden die-off in beds of Thalassia testudinum . Root anoxia followed by sulphide invasion may be a more general mechanism determining the growth and survival of other rooted plants in sulphate-rich aquatic environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire is a globally distributed disturbance that impacts terrestrial ecosystems and has been proposed to be a global “herbivore.” Fire, like herbivory, is a top-down driver that converts organic materials into inorganic products, alters community structure, and acts as an evolutionary agent. Though grazing and fire may have some comparable effects in grasslands, they do not have similar impacts on species composition and community structure. However, the concept of fire as a global herbivore implies that fire and herbivory may have similar effects on plant functional traits. Using 22 years of data from a mesic, native tallgrass prairie with a long evolutionary history of fire and grazing, we tested if trait composition between grazed and burned grassland communities would converge, and if the degree of convergence depended on fire frequency. Additionally, we tested if eliminating fire from frequently burned grasslands would result in a state similar to unburned grasslands, and if adding fire into a previously unburned grassland would cause composition to become more similar to that of frequently burned grasslands. We found that grazing and burning once every four years showed the most convergence in traits, suggesting that these communities operate under similar deterministic assembly rules and that fire and herbivory are similar disturbances to grasslands at the trait-group level of organization. Three years after reversal of the fire treatment we found that fire reversal had different effects depending on treatment. The formerly unburned community that was then burned annually became more similar to the annually burned community in trait composition suggesting that function may be rapidly restored if fire is reintroduced. Conversely, after fire was removed from the annually burned community trait composition developed along a unique trajectory indicating hysteresis, or a time lag for structure and function to return following a change in this disturbance regime. We conclude that functional traits and species-based metrics should be considered when determining and evaluating goals for fire management in mesic grassland ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-timber forest products (NTFPs) sector in Nepal is being promoted with the concept of sustainable management as articulated by the Convention on Biological Diversity. To promote and regulate this sector, Nepal adopted the Herbs and NTFP Development Policy in 2004. The goal of this thesis was to assess the effectiveness of this policy along with other forestry and natural resource policies in Nepal concerning the conservation and sustainable use of NTFPs. I conducted open-ended semi-structured interviews with 28 key informants in summer 2006 in Nepal where I also collected relevant documents and publications. I did qualitative analysis of data obtained from interviews and document review. The research found many important issues that need to be addressed to promote the NTFP sector as envisioned by the Government of Nepal. The findings of this research will help to further implement the policy and promote the NTFP sector through sustainable management practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biochar has been heralded a mechanism for carbon sequestration and an ideal amendment for improving soil quality. Melaleuca quinquenervia is an aggressive and wide-spread invasive species in Florida. The purpose of this research was to convert M. quinquenervia biomass into biochar and measure how application at two rates (2% or 5% wt/wt) impacts soil quality, plant growth, and microbial gas flux in a greenhouse experiment using Phaseolus vulgaris L. and local soil. Plant growth was measured using height, biomass weight, specific leaf area, and root-shoot ratio. Soil quality was evaluated according to nutrient content and water holding capacity. Microbial respiration, as carbon dioxide (CO2), was measured using gas chromatography. Biochar addition at 5% significantly reduced available soil nutrients, while 2% biochar application increased almost all nutrients. Plant biomass was highest in the control group, p2 flux decreased significantly in both biochar groups, but reductions were not long term.