14 resultados para Pirelli Tower
em Digital Commons at Florida International University
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1348/thumbnail.jpg
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1347/thumbnail.jpg
Resumo:
High-resolution tower observations of turbulent transport processes in the coastal atmospheric surface layer show that the exchange coefficients for momentum, enthalpy, and moisture behave differently for different environmental and atmospheric conditions. The drag coefficient is closely tied to wind speed and turbulent intensity. The exchange coefficient for enthalpy shows a dependence on stability. Analysis of the turbulent kinetic energy budget yields a new parameterization framework that well explains the observed variation of the drag coefficient, particularly at low wind speeds.
Resumo:
Forest disturbances are major sources of carbon dioxide to the atmosphere, and therefore impact global climate. Biogeophysical attributes, such as surface albedo (reflectivity), further control the climate-regulating properties of forests. Using both tower-based and remotely sensed data sets, we show that natural disturbances from wildfire, beetle outbreaks, and hurricane wind throw can significantly alter surface albedo, and the associated radiative forcing either offsets or enhances the CO2 forcing caused by reducing ecosystem carbon sequestration over multiple years. In the examined cases, the radiative forcing from albedo change is on the same order of magnitude as the CO2 forcing. The net radiative forcing resulting from these two factors leads to a local heating effect in a hurricane-damaged mangrove forest in the subtropics, and a cooling effect following wildfire and mountain pine beetle attack in boreal forests with winter snow. Although natural forest disturbances currently represent less than half of gross forest cover loss, that area will probably increase in the future under climate change, making it imperative to represent these processes accurately in global climate models.
Resumo:
Although wetlands are among the world's most productive ecosystems, little is known of long-term CO2 exchange in tropical and subtropical wetlands. The Everglades is a highly managed wetlands complex occupying >6000 km2 in south Florida. This ecosystem is oligotrophic, but extremely high rates of productivity have been previously reported. To evaluate CO2 exchange and its response to seasonality (dry vs. wet season) in the Everglades, an eddy covariance tower was established in a short-hydroperiod marl marsh. Rates of net ecosystem exchange and ecosystem respiration were small year-round and declined in the wet season relative to the dry season. Inundation reduced macrophyte CO2 uptake, substantially limiting gross ecosystem production. While light and air temperature exerted the primary controls on net ecosystem exchange and ecosystem respiration in the dry season, inundation weakened these relationships. The ecosystem shifted from a CO2 sink in the dry season to a CO2 source in the wet season; however, the marsh was a small carbon sink on an annual basis. Net ecosystem production, ecosystem respiration, and gross ecosystem production were −49.9, 446.1 and 496.0 g C m−2 year−1, respectively. Unexpectedly low CO2 flux rates and annual production distinguish the Everglades from many other wetlands. Nonetheless, impending changes in water management are likely to alter the CO2 balance of this wetland and may increase the source strength of these extensive short-hydroperiod wetlands.
Controls on sensible heat and latent energy fluxes from a short-hydroperiod Florida Everglades marsh
Resumo:
Little is known of energy balance in low latitude wetlands where there is a year-round growing season and a climate best defined by wet and dry seasons. The Florida Everglades is a highly managed and extensive subtropical wetland that exerts a substantial influence on the hydrology and climate of the south Florida region. However, the effects of seasonality and active water management on energy balance in the Everglades ecosystem are poorly understood. An eddy covariance and micrometeorological tower was established in a short-hydroperiod Everglades marsh to examine the dominant environmental controls on sensible heat (H) and latent energy (LE) fluxes, as well as the effects of seasonality on these parameters. Seasonality differentially affected H and LE fluxes in this marsh, such that H was principally dominant in the dry season and LE was strongly dominant in the wet season. The Bowen ratio was high for much of the dry season (1.5–2.4), but relatively low (H and LE fluxes across nearly all seasons and years (). However, the 2009 dry season LE data were not consistent with this relationship () because of low seasonal variation in LE following a prolonged end to the previous wet season. In addition to net radiation, H and LE fluxes were significantly related to soil volumetric water content (VWC), water depth, air temperature, and occasionally vapor pressure deficit. Given that VWC and water depth were determined in part by water management decisions, it is clear that human actions have the ability to influence the mode of energy dissipation from this ecosystem. Impending modifications to water management under the Comprehensive Everglades Restoration Plan may shift the dominant turbulent flux from this ecosystem further toward LE, and this change will likely affect local hydrology and climate.
Resumo:
Legionnaires' Disease has been a continuing source of concern to researchers and to medical personnel. As a result of the questions regarding how it is spread, innkeepers must take certain precautions to protect their property and their guests. The authors offer several legal cautions as well as background information for everyone in the industry.
Resumo:
Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about environmental conditions.
Resumo:
Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem response to changing climate and regional freshwater management practices.
Resumo:
http://digitalcommons.fiu.edu/fce_lter_photos/1346/thumbnail.jpg