2 resultados para Physiological potential
em Digital Commons at Florida International University
Resumo:
Climate warming is predicted to cause an increase in the growing season by as much as 30% for regions of the arctic tundra. This will have a significant effect on the physiological activity of the vascular plant species and the ecosystem as a whole. The need to understand the possible physiological change within this ecosystem is confounded by the fact that research in this extreme environment has been limited to periods when conditions are most favorable, mid June–mid August. This study attempted to develop the most comprehensive understanding to date of the physiological activity of seven tundra plant species in the Alaskan Arctic under natural and lengthened growing season conditions. Four interrelated lines of research, scaling from cellular signals to ecosystem processes, set the foundation for this study. ^ I established an experiment looking at the physiological response of arctic sedges to soil temperature stress with emphasis on the role of the hormone abscisic acid (ABA). A manipulation was also developed where the growing season was lengthened and soils were warmed in an attempt to determine the maximum physiological capacity of these seven vascular species. Additionally, the physiological capacities of four evergreens were tested in the subnivean environment along with the potential role anthocyanins play in their activity. The measurements were scaled up to determine the physiological role of these evergreens in maintaining ecosystem carbon fluxes. ^ These studies determined that soil temperature differentials significantly affect vascular plant physiology. ABA appears to be a physiological modifier that limits stomatal processes when root temperatures are low. Photosynthetic capacity was limited by internal plant physiological mechanisms in the face of a lengthened growing season. Therefore shifts in ecosystem carbon dynamics are driven by changes in species composition and biomass production on a per/unit area basis. These studies also found that changes in soil temperatures will have a greater effect of physiological processes than would the same magnitude of change in air temperature. The subnivean environment exhibits conditions that are favorable for photosynthetic activity in evergreen species. These measurements when scaled to the ecosystem have a significant role in limiting the system's carbon source capacity. ^
Resumo:
There is limited scientific knowledge on the composition of human odor from different biological specimens and the effect that physiological and psychological health conditions could have on them. There is currently no direct comparison of the volatile organic compounds (VOCs) emanating from different biological specimens collected from healthy individuals as well as individuals with certain diagnosed medical conditions. Therefore the question of matching VOCs present in human odor across various biological samples and across health statuses remains unanswered. The main purpose of this study was to use analytical instrumental methods to compare the VOCs from different biological specimens from the same individual and to compare the populations evaluated in this project. The goals of this study were to utilize headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC/MS) to evaluate its potential for profiling VOCs from specimens collected using standard forensic and medical methods over three different populations: healthy group with no diagnosed medical or psychological condition, one group with diagnosed type 2 diabetes, and one group with diagnosed major depressive disorder. The pre-treatment methods of collection materials developed for the study allowed for the removal of targeted VOCs from the sampling kits prior to sampling, extraction and analysis. Optimized SPME-GC/MS conditions has been demonstrated to be capable of sampling, identifying and differentiating the VOCs present in the five biological specimens collected from different subjects and yielded excellent detection limits for the VOCs from buccal swab, breath, blood, and urine with average limits of detection of 8.3 ng. Visual, Spearman rank correlation, and PCA comparisons of the most abundant and frequent VOCs from each specimen demonstrated that each specimen has characteristic VOCs that allow them to be differentiated for both healthy and diseased individuals. Preliminary comparisons of VOC profiles of healthy individuals, patients with type 2 diabetes, and patients with major depressive disorder revealed compounds that could be used as potential biomarkers to differentiate between healthy and diseased individuals. Finally, a human biological specimen compound database has been created compiling the volatile compounds present in the emanations of human hand odor, oral fluids, breath, blood, and urine.