7 resultados para Physiological and pathological changes
em Digital Commons at Florida International University
Fas-FasL expression and interactions in mouse tumor cell lines: Implications for tumor immune escape
Resumo:
The Fas system, comprising the Fas receptor (Fas/Apo-1/CD95) and its ligand, Fas ligand (FasL), is a central mediator of programmed cell death in various physiological and pathological processes. FasL exists as transmembrane and soluble forms and induces apoptosis on crosslinking with Fas receptor. Recent evidence indicated that tumor cells exploit this system for their immunologic escape that includes the loss of Fas and the gain of FasL expression. In the present study, nine mouse tumor cell lines of diverse origin were examined immunocytochemically for the expression of Fas and FasL. Nine of nine cell lines expressed FasL, and five of nine cell lines expressed Fas. FasL expression in these tumor cell lines was demonstrated to be functional by its induction of apoptosis in Fas-sensitive target cells in coculture experiments. These results suggest that FasL may be a prevalent mediator of immune privilege in mouse malignancies, and support the recently proposed "counterattack model" for local elimination of tumor-reactive immune cells by tumor cell-derived FasL.^ Culture supernatant of four cell lines expressing FasL showed cytotoxic effect on Fas-sensitive target cells, indicating the possibility of secreted FasL in the medium. The Fas-expressing cell lines were sensitized to anti-Fas antibody cytotoxicity following treatment with IL-2 and IFN-$\gamma$, suggesting cytokine stimulation as an effective target for future immunotherapeutic strategies. ^
Resumo:
The northern Everglades Water Conservation Areas have experienced recent ecological shifts in primary producer community structure involving marl periphyton mats and dense Typha-dominated macrophyte stands. Multiple investigations have identified phosphorus (P) as a driver of primary producer community structure, but effects of water impoundment beginning in the 1950s and changes in water hardness [e.g., (CaCO3)] have also been identified as a concern. In an effort to understand pre-1950, primary producer community structure and identify community shifts since 1950, we measured pigment proxies on three sediment cores collected in Water Conservation Area-2A (WCA-2A) along a phosphorus enrichment gradient. Photosynthetic pigments, sediment total phosphorus content (TP), organic matter, total organic carbon and nitrogen were used to infer historic primary producer communities and changes in water quality and hydrology regulating those communities. Excess 210Pb was used to establish historic dates for the sediment cores. Results indicate the northern area of WCA-2A increased marl deposition and increased algal abundance ca. 1920. This increase in (presumably) calcareous periphyton before intensive agriculture and impoundment suggest canal-derived calcium inputs and to some extent early drainage effects played a role in initiating this community shift. The northern area community then shifted to Typha dominance around 1965. The areas to the south in WCA-2A experienced increased marl deposition and algal abundance around or just prior to 1950s impoundment, the precise timing limited by core age resolution. Continued increases in algal abundance were evident after 1950, coinciding with impoundment and deepening of canals draining into WCA-2A, both likely increasing water mineral and nutrient concentrations. The intermediate site developed a Typha-dominated community ca. 1995 while the southern-most core site WCA-2A has yet to develop Typha dominance. Numerous studies link sediment TP >650 mg P/kg to marsh habitat degradation into Typha-dominance. The northern and intermediate cores where Typha is currently support this previous research by showing a distinct shift in the sediment record to Typha dominance corresponding to sediment TP between 600 and 700 mg P/kg. These temporal and spatial differences are consistent with modern evidence showing water-column gradients in mineral inputs (including Ca, carbonates, and phosphorus) altering primary producer community structure in WCA-2A, but also suggest hydroperiod has an effect on the mechanisms regulating periphyton development and Typha dominance.
Resumo:
Florida Bay is a highly dynamic estuary that exhibits wide natural fluctuations in salinity due to changes in the balance of precipitation, evaporation and freshwater runoff from the mainland. Rapid and large-scale modification of freshwater flow and construction of transportation conduits throughout the Florida Keys during the late nineteenth and twentieth centuries reshaped water circulation and salinity patterns across the ecosystem. In order to determine long-term patterns in salinity variation across the Florida Bay estuary, we used a diatom-based salinity transfer function to infer salinity within 3.27 ppt root mean square error of prediction from diatom assemblages from four ~130 year old sediment records. Sites were distributed along a gradient of exposure to anthropogenic shifts in the watershed and salinity. Precipitation was found to be the primary driver influencing salinity fluctuations over the entire record, but watershed modifications on the mainland and in the Florida Keys during the late-1800s and 1900s were the most likely cause of significant shifts in baseline salinity. The timing of these shifts in the salinity baseline varies across the Bay: that of the northeastern coring location coincides with the construction of the Florida Overseas Railway (AD 1906–1916), while that of the east-central coring location coincides with the drainage of Lake Okeechobee (AD 1881–1894). Subsequent decreases occurring after the 1960s (east-central region) and early 1980s (southwestern region) correspond to increases in freshwater delivered through water control structures in the 1950s–1970s and again in the 1980s. Concomitant increases in salinity in the northeastern and south-central regions of the Bay in the mid-1960s correspond to an extensive drought period and the occurrence of three major hurricanes, while the drop in the early 1970s could not be related to any natural event. This paper provides information about major factors influencing salinity conditions in Florida Bay in the past and quantitative estimates of the pre- and post-South Florida watershed modification salinity levels in different regions of the Bay. This information should be useful for environmental managers in setting restoration goals for the marine ecosystems in South Florida, especially for Florida Bay.
Resumo:
In the article - Past, Present, and Future: The Food Service Industry and Its Changes - by Brother Herman E. Zaccarelli, International Director, Restaurant, Hotel and Institutional Management Institute at Purdue University, Brother Zaccarelli initially states: “Educators play an important role in the evolution of the food service industry. The author discusses that evolution and suggests how educators can be change agents along with management in that evolutionary progression.” The author goes on to wax philosophically, as well as speak generically about the food service industry; to why it offers fascinating and rewarding careers. Additionally, he writes about the influence educators have on students in this regard. “Educators can speak about how the food service industry has benefited them both personally and professionally,” says Brother Zaccarelli. “We get excited about alerting students to the many opportunities and, in fact, serve as “salespersons” for the industry to whoever (school administrators, legislators, and peers in the educational institution) will listen.” Brother Zaccarelli also speaks to growth and changes in food service, and even more importantly about the people and faces behind everything that food service, and hospitality in general comprise. The author will have you know, that people are what drive an educator. “What makes the food service industry so great? At the heart of this question's answer is people: the people whom it serves in institutional and commercial operations of all types; the people who work within it; the people who provide the goods, services, and equipment to it; the people who study it,” says Brother Zaccarelli. “All of these groups have, of course, a vested personal and/or professional interest in seeing our industry improve.” Another concept the author would like you to absorb, and it’s even more so true today than yesterday, is the prevalence of convergence and divergence within food service. For food service and beyond, it is the common denominators and differences that make the hospitality-food service industry so dynamic and vibrant. These are the winds of change presented to an educator who wants to have a positive impact on students. The author warns that the many elements involved in the food service industry conspire to erode quality of service in an industry that is also persistently expanding, and whose cornerstone principles are underpinned by service itself. “The three concerns addressed - quality, employees, and marketing - are intimately related,” Brother Zaccarelli says in stripping-down the industry to bare essentials. He defines and addresses the issues related to each with an eye toward how education can reconcile said issues.
Resumo:
A combination of statistical and interpolation methods and Geographic Information System (GIS) spatial analysis was used to evaluate the spatial and temporal changes in groundwater Cl− concentrations in Collier and Lee Counties (southwestern Florida), and Miami-Dade and Broward Counties (southeastern Florida), since 1985. In southwestern Florida, the average Cl− concentrations in the shallow wells (0–43 m) in Collier and Lee Counties increased from 132 mg L−1 in 1985 to 230 mg L−1 in 2000. The average Cl− concentrations in the deep wells (>43 m) of southwestern Florida increased from 392 mg L−1 in 1985 to 447 mg L−1 in 2000. Results also indicated a positive correlation between the mean sea level and Cl− concentrations and between the mean sea level and groundwater levels for the shallow wells. Concentrations in the Biscayne Aquifer (southeastern Florida) were significantly higher than those of southwestern Florida. The average Cl− concentrations increased from 159 mg L−1 in 1985 to 470 mg L−1 in 2010 for the shallow wells (<33 m) and from 1360 mg L−1 in 1985 to 2050 mg L−1 in 2010 for the deep wells (>33 m). In the Biscayne Aquifer, wells showed a positive or negative correlation between mean sea level and Cl− concentrations according to their location with respect to the saltwater intrusion line. Wells located inland behind canal control structures and west of the saltwater intrusion line showed negative correlation values, whereas wells located east of the saltwater intrusion line showed positive values. Overall, the results indicated that since 1985, there was a potential decline in the available freshwater resources estimated at about 12–17% of the available drinking-quality groundwater of the southeastern study area located in the Biscayne Aquifer.
Resumo:
Flocculent material (floc) is an important energy source in wetlands. In the Florida Everglades, floc is present in both freshwater marshes and coastal environments and plays a key role in food webs and nutrient cycling. However, not much is known about its environmental dynamics, in particular its biological sources and bio-reactivity. We analysed floc samples collected from different environments in the Florida Everglades and applied biomarkers and pigment chemotaxonomy to identify spatial and seasonal differences in organic matter sources. An attempt was made to link floc composition with algal and plant productivity. Spatial differences were observed between freshwater marsh and estuarine floc. Freshwater floc receives organic matter inputs from local periphyton mats, as indicated by microbial biomarkers and chlorophyll-a estimates. At the estuarine sites, the floc is dominated by mangrove as well as diatom inputs from the marine end-member. The hydroperiod (duration and depth of inundation) at the freshwater sites influences floc organic matter preservation, where the floc at the short-hydroperiod site is more oxidised likely due to periodic dry-down conditions. Seasonal differences in floc composition were not consistent and the few that were observed are likely linked to the primary productivity of the dominant biomass (periphyton in the freshwater marshes and mangroves in the estuarine zone). Molecular evidence for hydrological transport of floc material from the freshwater marshes to the coastal fringe was also observed. With the on-going restoration of the Florida Everglades, it is important to gain a better understanding of the biogeochemical dynamics of floc, including its sources, transformations and reactivity.
Resumo:
This study examines changes in the Cuban family in the United States produced by time, migration, and the rise of new generations. The thesis will use a data set extracted from the 5% Public Use Microdata Series (PUMS) of the U.S. Decennial Census of Population for the years 1970, 1980 and 1990. Contingency table analysis and comparison of means were used to examine various family-related variables. The analysis points to changes in the traditional Cuban family towards less traditional family arrangements. The multigenerational feature of the Cuban household has diminished as the elderly have become independent and are more likely to be living on their own. Although female labor participation remains high, the occupational patterns of the first generation of Cuban women have diversified and a new trend has emerged for the second generation. The second generation of Cuban women demonstrates a strong inclination for white-collar occupations. Fertility rates remain low.