6 resultados para Physical-chemical characteristics

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorescence properties of whole water samples and molecular characteristics of ultrafiltrated dissolved organic matter (UDOM > 1,000 D) such as lignin phenol and neutral sugar compositions and 13C nuclear magnetic resonance (NMR) spectra were determined along a freshwater to marine gradient in Everglades National Park. Furthermore, UDOM samples were categorized by hierarchical cluster analysis based on their pyrolysis gas chromatography/mass spectrometry products. Fluorescence properties suggest that autochthonous DOM leached/exuded from biomass is quantitatively important in this system. 13C NMR spectra showed that UDOM from the oligotrophic Taylor Slough (TS) and Florida Bay (FB) ecosystems has low aromatic C (13% ± 3% for TS; 2% ± 2% for FB) and very high O-alkyl C (54% ± 4% for TS; 75% ± 4% for FB) concentrations. High O-alkyl C concentrations in FB suggest seagrass/phytoplankton communities as dominant sources of UDOM. The amount of neutral sugars was not appreciably different between the TS and FB sites (115 ± 12 mg C g C-1 UDOM) but their concentrations suggest a low level of diagenesis and high production rates of this material in this oligotrophic environment. Total yield of lignin phenols (vanillyl + syringyl phenols) in TS was low (0.20–0.39 mg 100 mg C-1 UDOM) compared with other riverine environments and even lower in FB (0.04–0.07 mg 100 mg C-1 UDOM) and could be a result of photodegradation and/or dilution by other utochthonous DOM. The high O-alkyl and low aromatic nature of this UDOM suggests significant biogenic inputs (as compared with soils) and limited bioavailability in this ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seagrasses commonly display carbon-limited photosynthetic rates. Thus, increases in atmospheric pCO2, and consequentially oceanic CO2(aq) concentrations, may prove beneficial. While addressed in mesocosms, these hypotheses have not been tested in the field with manipulative experimentation. This study examines the effects of in situ CO2(aq) enrichment on the structural and chemical characteristics of the tropical seagrass, Thalassia testudinum. CO2(aq) availability was manipulated for 6 months in clear, open-top chambers within a shallow seagrass meadow in the Florida Keys (USA), reproducing forecasts for the year 2100. Structural characteristics (leaf area, leaf growth, shoot mass, and shoot density) were unresponsive to CO2(aq) enrichment. However, leaf nitrogen and phosphorus content declined on average by 11 and 21 %, respectively. Belowground, non-structural carbohydrates increased by 29 %. These results indicate that increased CO2(aq) availability may primarily alter the chemical composition of seagrasses, influencing both the nutrient status and resilience of these systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The environmental dynamics of dissolved organic matter (DOM) were characterized for a shallow, subtropical, seagrass-dominated estuarine bay, namely Florida Bay, USA. Large spatial and seasonal variations in DOM quantity and quality were assessed using dissolved organic C (DOC) measurements and spectrophotometric properties including excitation emission matrix (EEM) fluorescence with parallel factor analysis (PARAFAC). Surface water samples were collected monthly for 2 years across the bay. DOM characteristics were statistically different across the bay, and the bay was spatially characterized into four basins based on chemical characteristics of DOM as determined by EEM-PARAFAC. Differences between zones were explained based on hydrology, geomorphology, and primary productivity of the local seagrass community. In addition, potential disturbance effects from a very active hurricane season were identified. Although the overall seasonal patterns of DOM variations were not significantly affected on a bay-wide scale by this disturbance, enhanced freshwater delivery and associated P and DOM inputs (both quantity and quality) were suggested as potential drivers for the appearance of algal blooms in high impact areas. The application of EEM-PARAFAC proved to be ideally suited for studies requiring high sample throughput methods to assess spatial and temporal ecological drivers and to determine disturbance-induced impacts in aquatic ecosystems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Freshwater wetland soils of the Everglades were studied in order to assess present environmental conditions and paleo-environmental changes using organic geochemistry techniques. Organic matter in dominant vegetation, peat and marl soils was characterized by geochemical means. Samples were selected along nutrient and hydrology gradients with the objective to determine the historical sources of organic matter as well as the extent of its preservation. Effective molecular proxies were developed to differentiate the relative input of organic matter from different biological sources to wetland soils. Thus historical vegetation shifts and hydroperiods were reconstructed using those proxies. The data show good correlations with historical water management practices starting at the turn of the century and during the mid 1900's. Overall, significant shortening of hydroperiods during this period was observed. The soil organic matter (SOM) preservation was assessed through elemental analysis and molecular characterizations of bulk 13C stable isotopes, solid state 13C NMR spectroscopy, UV-Vis spectroscopy, and tetramethyl ammonium hydroxide (TMAH) thermochemolysis-GC/MS. The relationship of the environmental conditions and degradation status of the soil organic matter (SOM) among the sites suggested that both high nutrient levels and long hydroperiod favor organic matter degradation in the soils. This is probably the result of an increase in the microbial activity in the soils which have higher nutrient levels, while longer hydroperiods may enhance physical/chemical degradation processes. The most significant transformations of biomass litter in this environment are controlled by very early physical/chemical processes and once the OM is incorporated into surface soils, the diagenetic change, even over extended periods of time is comparatively minimal, and SOM is relatively well preserved regardless of hydroperiod or nutrient levels. SOM accumulated in peat soils is more prone to continued degradation than the SOM in the marl soils. The latter is presumably stabilized early on through direct air exposure (oxidation) and thus, it is more refractory to further diagenetic transformations such as humification and aromatization reactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A multivariate statistical analysis was applied to a 10 year, multiparameter data set in an effort to describe the spatial dependence and inherent variation of water quality patterns in the mangrove estuaries of Ten Thousand Islands – Whitewater Bay area. Principal component analysis (PCA) of 16 water quality parameters collected monthly resulted in five groupings, which explained 72.5% of the variance of the original variables. The “Organic” component (PCI) was composed of alkaline phosphatase activity, total organic nitrogen, and total organic carbon; the “Dissolved Inorganic N” component (PCII) contained NO 3 − , NO 2 − , and NH 4 + ; the “Phytoplankton” component (PCIII) was made up of total phosphorus, chlorophyll a, and turbidity; dissolved oxygen and temperature were inversely related (PCIV); and salinity and soluble reactive phosphorus made up PCV. A cluster analysis of the mean and SD of PC scores resulted in the spatial aggregation of the 47 fixed stations into six classes having similar water quality, which we defined as: Mangrove Rivers, Whitewater Bay, Gulf Islands, Coot Bay, Blackwater River, and Inland Waterway. Marked differences in physical, chemical, and biological characteristics among classes were illustrated by this technique. Comparison of medians and variability of parameters among classes allowed large scale generalizations as to underlying differences in water quality in these regions. A strong south to north gradient in estuaries from high N - low P to low N - high P was ascribed to marked differences in landuse, freshwater input, geomorphology, and sedimentary geology along this tract. The ecological significance of this gradient discussed along with potential effects of future restoration plans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From 8/95 to 2/01, we investigated the ecological effects of intra- and inter-annual variability in freshwater flow through Taylor Creek in southeastern Everglades National Park. Continuous monitoring and intensive sampling studies overlapped with an array of pulsed weather events that impacted physical, chemical, and biological attributes of this region. We quantified the effects of three events representing a range of characteristics (duration, amount of precipitation, storm intensity, wind direction) on the hydraulic connectivity, nutrient and sediment dynamics, and vegetation structure of the SE Everglades estuarine ecotone. These events included a strong winter storm in November 1996, Tropical Storm Harvey in September 1999, and Hurricane Irene in October 1999. Continuous hydrologic and daily water sample data were used to examine the effects of these events on the physical forcing and quality of water in Taylor Creek. A high resolution, flow-through sampling and mapping approach was used to characterize water quality in the adjacent bay. To understand the effects of these events on vegetation communities, we measured mangrove litter production and estimated seagrass cover in the bay at monthly intervals. We also quantified sediment deposition associated with Hurricane Irene's flood surge along the Buttonwood Ridge. These three events resulted in dramatic changes in surface water movement and chemistry in Taylor Creek and adjacent regions of Florida Bay as well as increased mangrove litterfall and flood surge scouring of seagrass beds. Up to 5 cm of bay-derived mud was deposited along the ridge adjacent to the creek in this single pulsed event. These short-term events can account for a substantial proportion of the annual flux of freshwater and materials between the mangrove zone and Florida Bay. Our findings shed light on the capacity of these storm events, especially when in succession, to have far reaching and long lasting effects on coastal ecosystems such as the estuarine ecotone of the SE Everglades.