3 resultados para Physical parameters
em Digital Commons at Florida International University
Resumo:
We organized an international campaign to observe the blazar 0716+714 in the optical band. The observations took place from February 24, 2009 to February 26, 2009. The global campaign was carried out by observers from more that sixteen countries and resulted in an extended light curve nearly seventy-eight hours long. The analysis and the modeling of this light curve form the main work of this dissertation project. In the first part of this work, we present the time series and noise analyses of the data. The time series analysis utilizes discrete Fourier transform and wavelet analysis routines to search for periods in the light curve. We then present results of the noise analysis which is based on the idea that each microvariability curve is the realization of the same underlying stochastic noise processes in the blazar jet. ^ Neither reoccuring periods nor random noise can successfully explain the observed optical fluctuations. Hence in the second part, we propose and develop a new model to account for the microvariability we see in blazar 0716+714. We propose that the microvariability is due to the emission from turbulent regions in the jet that are energized by the passage of relativistic shocks. Emission from each turbulent cell forms a pulse of emission, and when convolved with other pulses, yields the observed light curve. We use the model to obtain estimates of the physical parameters of the emission regions in the jet.^
Resumo:
We organized an international campaign to observe the blazar 0716+714 in the optical band. The observations took place from February 24, 2009 to February 26, 2009. The global campaign was carried out by observers from more that sixteen countries and resulted in an extended light curve nearly seventy-eight hours long. The analysis and the modeling of this light curve form the main work of this dissertation project. In the first part of this work, we present the time series and noise analyses of the data. The time series analysis utilizes discrete Fourier transform and wavelet analysis routines to search for periods in the light curve. We then present results of the noise analysis which is based on the idea that each microvariability curve is the realization of the same underlying stochastic noise processes in the blazar jet. Neither reoccuring periods nor random noise can successfully explain the observed optical fluctuations. Hence in the second part, we propose and develop a new model to account for the microvariability we see in blazar 0716+714. We propose that the microvariability is due to the emission from turbulent regions in the jet that are energized by the passage of relativistic shocks. Emission from each turbulent cell forms a pulse of emission, and when convolved with other pulses, yields the observed light curve. We use the model to obtain estimates of the physical parameters of the emission regions in the jet.
Resumo:
The Inupiaq Tribe resides north of the Arctic Circle in northwestern Alaska. The people are characterized by their continued dependence on harvested fish, game and plants, known as a subsistence lifestyle (Lee 2000:35-45). Many are suggesting that they leave their historical home and move to urban communities, places believed to be more comfortable as they age. Tribal Elders disagree and have stated, "Elders need to be near the river where they were raised" (Branch 2005:1). The research questions focused on differences that location had on four groups of variables: nutrition parameters, community support, physical functioning and health. A total of 101 Inupiaq Elders ≥ 50 years were surveyed: 52 from two rural villages, and 49 in Anchorage. Location did not influence energy intake or intake of protein; levels of nutrition risk and food insecurity; all had similar rates between the two groups. Both rural and urban Elders reported few limitations of ADLs and IADLs. Self-reported general health scores (SF-12.v2 GH) were also similar by location. Differences were found with rural Elders reporting higher physical functioning summary scores (SF-12.v2 PCS), higher mental health scores (SF-12.v2 MH), higher vitality and less pain even though the rural mean ages were five years older than the urban Elders. Traditional food customs appear to support the overall health and well being of the rural Inupiaq Elders as demonstrated by higher intakes of Native foods, stronger food sharing networks and higher family activity scores than did urban Elders. The rural community appeared to foster continued physical activity. It has been said that when Elders are in the rural setting they are near "people they know" and it is a place "where they can get their Native food" (NRC 2005). These factors appear to be important as Inupiaq Elders age, as rural Inupiaq Elders fared as well or better than Inupiaq Elders in terms of diet, mental and physical health.