3 resultados para Photosynthetic Response

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation-light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutualistic symbioses between scleractinian corals and endosymbiotic dinoflagellates (Symbiodinium spp.) are the foundation of coral reef ecosystems. For many coral-algal symbioses, prolonged episodes of thermal stress damage the symbiont's photosynthetic capability, resulting in its expulsion from the host. Despite the link between photosynthetic competency and symbiont expulsion, little is known about the effect of thermal stress on the expression of photosystem genes in Symbiodinium. This study used real-time PCR to monitor the transcript abundance of two important photosynthetic reaction center genes, psbA(encoding the D1 protein of photosystem II) and psaA (encoding the P700 protein of photosystem I), in four cultured isolates (representing ITS2-types A13, A20, B1, and F2) and two in hospite Symbiodinium spp. within the coral Pocillopora spp. (ITS2-types C1b-c and D1). Both cultured and in hospite Symbiodinium samples were exposed to elevated temperatures (32°C) over a 7-day period and examined for changes in photochemistry and transcript abundance. Symbiodinium A13 and C1b-c (both thermally sensitive) demonstrated significant declines in both psbA and psaA during the thermal stress treatment, whereas the transcript levels of the other Symbiodinium types remained stable. The downregulation of both core photosystem genes could be the result of several different physiological mechanisms, but may ultimately limit repair rates of photosynthetic proteins, rendering some Symbiodinium spp. especially susceptible to thermal stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photosynthetic bicarbonate () use properties of three widely distributed tropical seagrasses were compared using a series of laboratory experiments. Photosynthetic rates of Thalassia testudinum, Halodule wrightii, and Syringodium filiforme were monitored in an enclosed chamber while being subjected to shifts in pH and dissolved inorganic carbon. Specific mechanisms of seagrass use were compared by examining the photosynthetic effects of the carbonic anhydrase inhibitor acetazolamide (AZ). All seagrasses increased photosynthetic rates with reduced pH, suggesting a large effect of dissolved aqueous carbon dioxide (CO2(aq)). However, there was considerable interspecific variation in pH response. T. testudinum was highly sensitive, increasing photosynthetic rates by 100% as the pH was reduced from 8.2 to 7.4, whereas rates in H. wrightii and S. filiforme increased by only 20% over a similar range, and displayed prominent photosynthetic plateaus, indicating an increased capacity for use. Additional incubations that manipulated [] under constant [CO2(aq)] support these findings, as only H. wrightii and S. filiforme increased photosynthetic rates with increasing []. T. testudinum responded to AZ addition, indicating that carbonic anhydrase enzymes facilitate limited use. H. wrightii and S. filiforme showed no response to AZ, suggesting alternate, more efficient mechanisms of use. Estimated kinetic parameters, Ks(CO2) and Vmax, revealed interspecific variation and further support these conclusions. Variation in photosynthetic pH responses and AZ sensitivity indicate distinctions in the carbon use properties of seagrasses exposed to similar environmental conditions. These results suggest that not all seagrasses will similarly respond to future increases in CO2(aq) availability. Attention towards potential shifts in competitive interactions within multispecific seagrass beds is warranted.