2 resultados para Permeability Compaction
em Digital Commons at Florida International University
Resumo:
A limestone sample was scanned using computed tomography (CT) and the hydraulic conductivity of the 3D reconstructed sample was determined using Lattice- Boltzmann methods (LBM) at varying scales. Due to the shape and size of the original sample, it was challenging to obtain a consistent rectilinear test sample. Through visual inspection however, 91 mm and 76 mm samples were digitally cut from the original. The samples had porosities of 58% and 64% and produced hydraulic conductivity values of K= 13.5 m/s and K=34.5 m/s, respectively. Both of these samples were re-sampled to 1/8 and 1/64 of their original size to produce new virtual samples at lower resolutions of 0.542 mm/lu and 1.084 mm/lu, while still representing the same physical dimensions. The hydraulic conductivity tended to increase slightly as the resolution became coarser. In order to determine an REV, the 91 mm sample was also sub-sampled into blocks that were 1/8 and 1/64 the size of the original. The results were consistent with analytical expectations such as those produced by the Kozeny-Carman equation. A definitive REV size was not reached, however, indicating the need for a larger sample. The methods described here demonstrate the ability of LBM to test rock structures and sizes not normally attainable.
Resumo:
The Pleistocene carbonate rock Biscayne Aquifer of south Florida contains laterally-extensive bioturbated ooltic zones characterized by interconnected touching-vug megapores that channelize most flow and make the aquifer extremely permeable. Standard petrophysical laboratory techniques may not be capable of accurately measuring such high permeabilities. Instead, innovative procedures that can measure high permeabilities were applied. These fragile rocks cannot easily be cored or cut to shapes convenient for conducting permeability measurements. For the laboratory measurement, a 3D epoxy-resin printed rock core was produced from computed tomography data obtained from an outcrop sample. Permeability measurements were conducted using a viscous fluid to permit easily observable head gradients (~2 cm over 1 m) simultaneously with low Reynolds number flow. For a second permeability measurement, Lattice Boltzmann Method flow simulations were computed on the 3D core renderings. Agreement between the two estimates indicates an accurate permeability was obtained that can be applied to future studies.