3 resultados para PROBABILITY-DISTRIBUTIONS
em Digital Commons at Florida International University
Resumo:
Extensive data sets on water quality and seagrass distributions in Florida Bay have been assembled under complementary, but independent, monitoring programs. This paper presents the landscape-scale results from these monitoring programs and outlines a method for exploring the relationships between two such data sets. Seagrass species occurrence and abundance data were used to define eight benthic habitat classes from 677 sampling locations in Florida Bay. Water quality data from 28 monitoring stations spread across the Bay were used to construct a discriminant function model that assigned a probability of a given benthic habitat class occurring for a given combination of water quality variables. Mean salinity, salinity variability, the amount of light reaching the benthos, sediment depth, and mean nutrient concentrations were important predictor variables in the discriminant function model. Using a cross-validated classification scheme, this discriminant function identified the most likely benthic habitat type as the actual habitat type in most cases. The model predicted that the distribution of benthic habitat types in Florida Bay would likely change if water quality and water delivery were changed by human engineering of freshwater discharge from the Everglades. Specifically, an increase in the seasonal delivery of freshwater to Florida Bay should cause an expansion of seagrass beds dominated by Ruppia maritima and Halodule wrightii at the expense of the Thalassia testudinum-dominated community that now occurs in northeast Florida Bay. These statistical techniques should prove useful for predicting landscape-scale changes in community composition in diverse systems where communities are in quasi-equilibrium with environmental drivers.
Resumo:
The purpose of this study was to correct some mistakes in the literature and derive a necessary and sufficient condition for the MRL to follow the roller-coaster pattern of the corresponding failure rate function. It was also desired to find the conditions under which the discrete failure rate function has an upside-down bathtub shape if corresponding MRL function has a bathtub shape. The study showed that if discrete MRL has a bathtub shape, then under some conditions the corresponding failure rate function has an upside-down bathtub shape. Also the study corrected some mistakes in proofs of Tang, Lu and Chew (1999) and established a necessary and sufficient condition for the MRL to follow the roller-coaster pattern of the corresponding failure rate function. Similarly, some mistakes in Gupta and Gupta (2000) are corrected, with the ensuing results being expanded and proved thoroughly to establish the relationship between the crossing points of the failure rate and associated MRL functions. The new results derived in this study will be useful to model various lifetime data that occur in environmental studies, medical research, electronics engineering, and in many other areas of science and technology.
Resumo:
A class of lifetime distributions which has received considerable attention in modelling and analysis of lifetime data is the class of lifetime distributions with bath-tub shaped failure rate functions because of their extensive applications. The purpose of this thesis was to introduce a new class of bivariate lifetime distributions with bath-tub shaped failure rates (BTFRFs). In this research, first we reviewed univariate lifetime distributions with bath-tub shaped failure rates, and several multivariate extensions of a univariate failure rate function. Then we introduced a new class of bivariate distributions with bath-tub shaped failure rates (hazard gradients). Specifically, the new class of bivariate lifetime distributions were developed using the method of Morgenstern’s method of defining bivariate class of distributions with given marginals. The computer simulations and numerical computations were used to investigate the properties of these distributions.