7 resultados para POINT IMAGING TECHNIQUE
em Digital Commons at Florida International University
Resumo:
Near infrared spectroscopy (NIRS) is an emerging non-invasive optical neuro imaging technique that monitors the hemodynamic response to brain activation with ms-scale temporal resolution and sub-cm spatial resolution. The overall goal of my dissertation was to develop and apply NIRS towards investigation of neurological response to language, joint attention and planning and execution of motor skills in healthy adults. Language studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal and fronto-temporal cortex of healthy adults in response to language reception and expression. The mathematical model developed based on granger causality explicated the directional flow of information during the processing of language stimuli by the fronto-temporal cortex. Joint attention and planning/ execution of motor skill studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal cortex of healthy adults and in children (5-8 years old) with autism (for joint attention studies) and individuals with cerebral palsy (for planning/execution of motor skills studies). The joint attention studies on healthy adults showed differences in activation as well as intensity and phase dependent connectivity in the frontal cortex during joint attention in comparison to rest. The joint attention studies on typically developing children showed differences in frontal cortical activation in comparison to that in children with autism. The planning and execution of motor skills studies on healthy adults and individuals with cerebral palsy (CP) showed difference in the frontal cortical dominance, that is, bilateral and ipsilateral dominance, respectively. The planning and execution of motor skills studies also demonstrated the plastic and learning behavior of brain wherein correlation was found between the relative change in total hemoglobin in the frontal cortex and the kinematics of the activity performed by the participants. Thus, during my dissertation the NIRS neuroimaging technique was successfully implemented to investigate the neurological response of language, joint attention and planning and execution of motor skills in healthy adults as well as preliminarily on children with autism and individuals with cerebral palsy. These NIRS studies have long-term potential for the design of early stage interventions in children with autism and customized rehabilitation in individuals with cerebral palsy.
Resumo:
Concrete substructures are often subjected to environmental deterioration, such as sulfate and acid attack, which leads to severe damage and causes structure degradation or even failure. In order to improve the durability of concrete, the High Performance Concrete (HPC) has become widely used by partially replacing cement with pozzolanic materials. However, HPC degradation mechanisms in sulfate and acidic environments are not completely understood. It is therefore important to evaluate the performance of the HPC in such conditions and predict concrete service life by establishing degradation models. This study began with a review of available environmental data in the State of Florida. A total of seven bridges have been inspected. Concrete cores were taken from these bridge piles and were subjected for microstructural analysis using Scanning Electron Microscope (SEM). Ettringite is found to be the products of sulfate attack in sulfate and acidic condition. In order to quantitatively analyze concrete deterioration level, an image processing program is designed using Matlab to obtain quantitative data. Crack percentage (Acrack/Asurface) is used to evaluate concrete deterioration. Thereafter, correlation analysis was performed to find the correlation between five related variables and concrete deterioration. Environmental sulfate concentration and bridge age were found to be positively correlated, while environmental pH level was found to be negatively correlated. Besides environmental conditions, concrete property factor was also included in the equation. It was derived from laboratory testing data. Experimental tests were carried out implementing accelerated expansion test under controlled environment. Specimens of eight different mix designs were prepared. The effect of pozzolanic replacement rate was taken into consideration in the empirical equation. And the empirical equation was validated with existing bridges. Results show that the proposed equations compared well with field test results with a maximum deviation of ± 20%. Two examples showing how to use the proposed equations are provided to guide the practical implementation. In conclusion, the proposed approach of relating microcracks to deterioration is a better method than existing diffusion and sorption models since sulfate attack cause cracking in concrete. Imaging technique provided in this study can also be used to quantitatively analyze concrete samples.
Resumo:
Near infrared spectroscopy (NIRS) is an emerging non-invasive optical neuro imaging technique that monitors the hemodynamic response to brain activation with ms-scale temporal resolution and sub-cm spatial resolution. The overall goal of my dissertation was to develop and apply NIRS towards investigation of neurological response to language, joint attention and planning and execution of motor skills in healthy adults. Language studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal and fronto-temporal cortex of healthy adults in response to language reception and expression. The mathematical model developed based on granger causality explicated the directional flow of information during the processing of language stimuli by the fronto-temporal cortex. Joint attention and planning/ execution of motor skill studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal cortex of healthy adults and in children (5-8 years old) with autism (for joint attention studies) and individuals with cerebral palsy (for planning/execution of motor skills studies). The joint attention studies on healthy adults showed differences in activation as well as intensity and phase dependent connectivity in the frontal cortex during joint attention in comparison to rest. The joint attention studies on typically developing children showed differences in frontal cortical activation in comparison to that in children with autism. The planning and execution of motor skills studies on healthy adults and individuals with cerebral palsy (CP) showed difference in the frontal cortical dominance, that is, bilateral and ipsilateral dominance, respectively. The planning and execution of motor skills studies also demonstrated the plastic and learning behavior of brain wherein correlation was found between the relative change in total hemoglobin in the frontal cortex and the kinematics of the activity performed by the participants. Thus, during my dissertation the NIRS neuroimaging technique was successfully implemented to investigate the neurological response of language, joint attention and planning and execution of motor skills in healthy adults as well as preliminarily on children with autism and individuals with cerebral palsy. These NIRS studies have long-term potential for the design of early stage interventions in children with autism and customized rehabilitation in individuals with cerebral palsy.
Resumo:
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.
Resumo:
This dissertation develops an image processing framework with unique feature extraction and similarity measurements for human face recognition in the thermal mid-wave infrared portion of the electromagnetic spectrum. The goals of this research is to design specialized algorithms that would extract facial vasculature information, create a thermal facial signature and identify the individual. The objective is to use such findings in support of a biometrics system for human identification with a high degree of accuracy and a high degree of reliability. This last assertion is due to the minimal to no risk for potential alteration of the intrinsic physiological characteristics seen through thermal infrared imaging. The proposed thermal facial signature recognition is fully integrated and consolidates the main and critical steps of feature extraction, registration, matching through similarity measures, and validation through testing our algorithm on a database, referred to as C-X1, provided by the Computer Vision Research Laboratory at the University of Notre Dame. Feature extraction was accomplished by first registering the infrared images to a reference image using the functional MRI of the Brain’s (FMRIB’s) Linear Image Registration Tool (FLIRT) modified to suit thermal infrared images. This was followed by segmentation of the facial region using an advanced localized contouring algorithm applied on anisotropically diffused thermal images. Thermal feature extraction from facial images was attained by performing morphological operations such as opening and top-hat segmentation to yield thermal signatures for each subject. Four thermal images taken over a period of six months were used to generate thermal signatures and a thermal template for each subject, the thermal template contains only the most prevalent and consistent features. Finally a similarity measure technique was used to match signatures to templates and the Principal Component Analysis (PCA) was used to validate the results of the matching process. Thirteen subjects were used for testing the developed technique on an in-house thermal imaging system. The matching using an Euclidean-based similarity measure showed 88% accuracy in the case of skeletonized signatures and templates, we obtained 90% accuracy for anisotropically diffused signatures and templates. We also employed the Manhattan-based similarity measure and obtained an accuracy of 90.39% for skeletonized and diffused templates and signatures. It was found that an average 18.9% improvement in the similarity measure was obtained when using diffused templates. The Euclidean- and Manhattan-based similarity measure was also applied to skeletonized signatures and templates of 25 subjects in the C-X1 database. The highly accurate results obtained in the matching process along with the generalized design process clearly demonstrate the ability of the thermal infrared system to be used on other thermal imaging based systems and related databases. A novel user-initialization registration of thermal facial images has been successfully implemented. Furthermore, the novel approach at developing a thermal signature template using four images taken at various times ensured that unforeseen changes in the vasculature did not affect the biometric matching process as it relied on consistent thermal features.
Resumo:
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.
Resumo:
This dissertation describes the development of a label-free, electrochemical immunosensing platform integrated into a low-cost microfluidic system for the sensitive, selective and accurate detection of cortisol, a steroid hormone co-related with many physiological disorders. Abnormal levels of cortisol is indicative of conditions such as Cushing’s syndrome, Addison’s disease, adrenal insufficiencies and more recently post-traumatic stress disorder (PTSD). Electrochemical detection of immuno-complex formation is utilized for the sensitive detection of Cortisol using Anti-Cortisol antibodies immobilized on sensing electrodes. Electrochemical detection techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) have been utilized for the characterization and sensing of the label-free detection of Cortisol. The utilization of nanomaterial’s as the immobilizing matrix for Anti-cortisol antibodies that leads to improved sensor response has been explored. A hybrid nano-composite of Polyanaline-Ag/AgO film has been fabricated onto Au substrate using electrophoretic deposition for the preparation of electrochemical immunosening of cortisol. Using a conventional 3-electrode electrochemical cell, a linear sensing range of 1pM to 1µM at a sensitivity of 66µA/M and detection limit of 0.64pg/mL has been demonstrated for detection of cortisol. Alternately, a self-assembled monolayer (SAM) of dithiobis(succinimidylpropionte) (DTSP) has been fabricated for the modification of sensing electrode to immobilize with Anti-Cortisol antibodies. To increase the sensitivity at lower detection limit and to develop a point-of-care sensing platform, the DTSP-SAM has been fabricated on micromachined interdigitated microelectrodes (µIDE). Detection of cortisol is demonstrated at a sensitivity of 20.7µA/M and detection limit of 10pg/mL for a linear sensing range of 10pM to 200nM using the µIDE’s. A simple, low-cost microfluidic system is designed using low-temperature co-fired ceramics (LTCC) technology for the integration of the electrochemical cortisol immunosensor and automation of the immunoassay. For the first time, the non-specific adsorption of analyte on LTCC has been characterized for microfluidic applications. The design, fabrication technique and fluidic characterization of the immunoassay are presented. The DTSP-SAM based electrochemical immunosensor on µIDE is integrated into the LTCC microfluidic system and cortisol detection is achieved in the microfluidic system in a fully automated assay. The fully automated microfluidic immunosensor hold great promise for accurate, sensitive detection of cortisol in point-of-care applications.