4 resultados para PEC, posta elettronica certificata, sicurezza, privacy, firma digitale, firma elettronica

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rising health care costs are causing some employers to assess and regulate the health behaviors of their employees. Different approaches and levels of non-smoking regulations are discussed, and the legal parameters and challenges of regulating employees’ private behaviors are explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In their dialogue - An Analysis of Stock Market Performance: The Dow Jones Industrial Average and the Three Top Performing Lodging Firms 1982 – 1988 - by N. H. Ringstrom, Professor and Elisa S. Moncarz, Associate Professor, School of Hospitality Management at Florida International University, Professors Ringstrom and Moncarz state at the outset: “An interesting comparison can be made between the Dow Jones lndustrial Average and the three top performing, publicly held lodging firms which had $100 million or more in annual lodging revenues. The authors provide that analytical comparison with Prime Motor Inns Inc., the Marriott Corporation, and Hilton Hotels Corporation.” “Based on a criterion of size, only those with $100 million in annual lodging revenues or more resulted in the inclusion of the following six major hotel firms: Prime Motor Inns, Inc., Marriott Corporation, Hilton Hotels Corporation, Ramada Inc., Holiday Corporation and La Quinta Motor Inns, Inc.,” say Professors Ringstrom and Moncarz in framing this discussion with its underpinnings in the years 1982 to 1988. The article looks at each company’s fiscal and Dow Jones performance for the years in question, and presents a detailed analysis of said performance. Graphic analysis is included. It helps to have a fairly vigorous knowledge of stock market and fiscal examination criteria to digest this material. The Ringstrom and Moncarz analysis of Prime Motor Inns Incorporated occupies the first 7 pages of this article in and of itself. Marriot Corporation also occupies a prominent position in this discussion. “Marriott, a giant in the hospitality industry, is huge and continuing to grow. Its 1987 sales were more than $6.5 billion, and its employees numbered over 200,000 individuals, which place Marriott among the 10 largest private employers in the country,” Ringstrom and Moncarz parse Marriott’s influence as a significant financial player. “The firm has a fantastic history of growth over the past 60 years, starting in May 1927 with a nine-seat A & W Root Beer stand in Washington, D.C.,” offer the authors in initialing Marriot’s portion of the discussion with a brief history lesson. The Marriot firm was officially incorporated as Hot Shoppes Inc. in 1929. As the thesis statement for the discussion suggests the performance of these huge, hospitality giants is compared and contrasted directly to the Dow Jones Industrial Average performance. Reasons and empirical data are offered by the authors to explain the distinctions. It would be difficult to explain those distinctions without delving deeply into corporate financial history and the authors willingly do so in an effort to help you understand the growth, as well as some of the setbacks of these hospitality based juggernauts. Ringstrom and Moncarz conclude the article with an extensive overview and analysis of the Hilton Hotels Corporation performance for the period outlined. It may well be the most fiscally dynamic of the firms presented for your perusal. “It is interesting to note that Hilton Hotels Corporation maintained a very strong financial position with relatively little debt during the years 1982-1988…the highest among all companies in the study,” the authors paint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. ^ This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.