16 resultados para PBL tutorial background clinical information needs
em Digital Commons at Florida International University
Resumo:
The ultimate intent of this dissertation was to broaden and strengthen our understanding of IT implementation by emphasizing research efforts on the dynamic nature of the implementation process. More specifically, efforts were directed toward opening the "black box" and providing the story that explains how and why contextual conditions and implementation tactics interact to produce project outcomes. In pursuit of this objective, the dissertation was aimed at theory building and adopted a case study methodology combining qualitative and quantitative evidence. Precisely, it examined the implementation process, use and consequences of three clinical information systems at Jackson Memorial Hospital, a large tertiary care teaching hospital.^ As a preliminary step toward the development of a more realistic model of system implementation, the study proposes a new set of research propositions reflecting the dynamic nature of the implementation process.^ Findings clearly reveal that successful implementation projects are likely to be those where key actors envision end goals, anticipate challenges ahead, and recognize the presence of and seize opportunities. It was also found that IT implementation is characterized by the systems theory of equifinality, that is, there are likely several equally effective ways to achieve a given end goal. The selection of a particular implementation strategy appears to be a rational process where actions and decisions are largely influenced by the degree to which key actors recognize the mediating role of each tactic and are motivated to action. The nature of the implementation process is also characterized by the concept of "duality of structure," that is, context and actions mutually influence each other. Another key finding suggests that there is no underlying program that regulates the process of change and moves it form one given point toward a subsequent and already prefigured end. For this reason, the implementation process cannot be thought of as a series of activities performed in a sequential manner such as conceived in stage models. Finally, it was found that IT implementation is punctuated by a certain indeterminacy. Results suggest that only when substantial efforts are focused on what to look for and think about, it is less likely that unfavorable and undesirable consequences will occur. ^
Resumo:
Background The HIV virus is known for its ability to exploit numerous genetic and evolutionary mechanisms to ensure its proliferation, among them, high replication, mutation and recombination rates. Sliding MinPD, a recently introduced computational method [1], was used to investigate the patterns of evolution of serially-sampled HIV-1 sequence data from eight patients with a special focus on the emergence of X4 strains. Unlike other phylogenetic methods, Sliding MinPD combines distance-based inference with a nonparametric bootstrap procedure and automated recombination detection to reconstruct the evolutionary history of longitudinal sequence data. We present serial evolutionary networks as a longitudinal representation of the mutational pathways of a viral population in a within-host environment. The longitudinal representation of the evolutionary networks was complemented with charts of clinical markers to facilitate correlation analysis between pertinent clinical information and the evolutionary relationships. Results Analysis based on the predicted networks suggests the following:: significantly stronger recombination signals (p = 0.003) for the inferred ancestors of the X4 strains, recombination events between different lineages and recombination events between putative reservoir virus and those from a later population, an early star-like topology observed for four of the patients who died of AIDS. A significantly higher number of recombinants were predicted at sampling points that corresponded to peaks in the viral load levels (p = 0.0042). Conclusion Our results indicate that serial evolutionary networks of HIV sequences enable systematic statistical analysis of the implicit relations embedded in the topology of the structure and can greatly facilitate identification of patterns of evolution that can lead to specific hypotheses and new insights. The conclusions of applying our method to empirical HIV data support the conventional wisdom of the new generation HIV treatments, that in order to keep the virus in check, viral loads need to be suppressed to almost undetectable levels.
Resumo:
The purpose of this study was to determine the impact of selected factors on nurses' attitudes toward bedside computers. Bedside computer systems, also referred to as point-of-care systems, are clinical information systems that allow documentation of patient care and retrieval of data at the patient's bedside, or in close proximity to where care is delivered. The adoption of bedside computer systems appears to be increasing among U.S. institutions. As healthcare institutions undertake automation projects, they face many challenges associated with implementing large-scale change. ^ The study explored four factors and their relationship to nurses' attitudes toward bedside computers. A pre-bedside implementation survey of 184 staff nurses did not demonstrate a relationship between previous computer experience and nurses' attitudes toward bedside computers (p > .05). The data did not indicate a relationship between nurses' formal education and their attitude toward bedside computers (p > .05). The data did support a relationship between nurses' previous computer experience and their comfort in the use of bedside computers (p < .0005). Using a quasi-experimental control group design, attitudes of nurses were studied over an 18 month period. The Pre versus Post Survey data indicated that nurses who used bedside computers, the experimental group, had more positive attitudes than the nurses who did not use bedside computers, the control group (p < .0005). ^ The findings are significant to institutions implementing bedside computers, to the human resource development staff overseeing bedside computer training, and to the practice of clinical nursing. ^
Resumo:
This dissertation established a software-hardware integrated design for a multisite data repository in pediatric epilepsy. A total of 16 institutions formed a consortium for this web-based application. This innovative fully operational web application allows users to upload and retrieve information through a unique human-computer graphical interface that is remotely accessible to all users of the consortium. A solution based on a Linux platform with My-SQL and Personal Home Page scripts (PHP) has been selected. Research was conducted to evaluate mechanisms to electronically transfer diverse datasets from different hospitals and collect the clinical data in concert with their related functional magnetic resonance imaging (fMRI). What was unique in the approach considered is that all pertinent clinical information about patients is synthesized with input from clinical experts into 4 different forms, which were: Clinical, fMRI scoring, Image information, and Neuropsychological data entry forms. A first contribution of this dissertation was in proposing an integrated processing platform that was site and scanner independent in order to uniformly process the varied fMRI datasets and to generate comparative brain activation patterns. The data collection from the consortium complied with the IRB requirements and provides all the safeguards for security and confidentiality requirements. An 1-MR1-based software library was used to perform data processing and statistical analysis to obtain the brain activation maps. Lateralization Index (LI) of healthy control (HC) subjects in contrast to localization-related epilepsy (LRE) subjects were evaluated. Over 110 activation maps were generated, and their respective LIs were computed yielding the following groups: (a) strong right lateralization: (HC=0%, LRE=18%), (b) right lateralization: (HC=2%, LRE=10%), (c) bilateral: (HC=20%, LRE=15%), (d) left lateralization: (HC=42%, LRE=26%), e) strong left lateralization: (HC=36%, LRE=31%). Moreover, nonlinear-multidimensional decision functions were used to seek an optimal separation between typical and atypical brain activations on the basis of the demographics as well as the extent and intensity of these brain activations. The intent was not to seek the highest output measures given the inherent overlap of the data, but rather to assess which of the many dimensions were critical in the overall assessment of typical and atypical language activations with the freedom to select any number of dimensions and impose any degree of complexity in the nonlinearity of the decision space.
Resumo:
Enterprise Resource Planning (ERP) systems are software programs designed to integrate the functional requirements, and operational information needs of a business. Pressures of competition and entry standards for participation in major manufacturing supply chains are creating greater demand for small business ERP systems. The proliferation of new offerings of ERP systems introduces complexity to the selection process to identify the right ERP business software for a small and medium-sized enterprise (SME). The selection of an ERP system is a process in which a faulty conclusion poses a significant risk of failure to SME’s. The literature reveals that there are still very high failure rates in ERP implementation, and that faulty selection processes contribute to this failure rate. However, the literature is devoid of a systematic methodology for the selection process for an ERP system by SME’s. This study provides a methodological approach to selecting the right ERP system for a small or medium-sized enterprise. The study employs Thomann’s meta-methodology for methodology development; a survey of SME’s is conducted to inform the development of the methodology, and a case study is employed to test, and revise the new methodology. The study shows that a rigorously developed, effective methodology that includes benchmarking experiences has been developed and successfully employed. It is verified that the methodology may be applied to the domain of users it was developed to serve, and that the test results are validated by expert users and stakeholders. Future research should investigate in greater detail the application of meta-methodologies to supplier selection and evaluation processes for services and software; additional research into the purchasing practices of small firms is clearly needed.^
Resumo:
This article outlines an approach, based on ecosystem services, for assessing the trade-offs inherent in managing humans embedded in ecological systems. Evaluating these trade-offs requires an understanding of the biophysical magnitudes of the changes in ecosystem services that result from human actions, and of the impact of these changes on human welfare. We summarize the state of the art of ecosystem services-based management and the information needs for applying it. Three case studies of Long Term Ecological Research (LTER) sites--coastal, urban, and agricultural-- illustrate the usefulness, information needs, quantification possibilities, and methods for this approach. One example of the application of this approach, with rigorously established service changes and valuations taken from the literature, is used to illustrate the potential for full economic valuation of several agricultural landscape management options, including managing for water quality, biodiversity, and crop productivity.
Resumo:
An electronic database support system for strategic planning activities can be built by providing conceptual and system specific information. The design and development of this type of system center around the information needs of strategy planners. Data that supply information on the organization's internal and external environments must be originated, evaluated, collected, organized, managed, and analyzed. Strategy planners may use the resulting information to improve their decision making.
Resumo:
As the Web evolves unexpectedly fast, information grows explosively. Useful resources become more and more difficult to find because of their dynamic and unstructured characteristics. A vertical search engine is designed and implemented towards a specific domain. Instead of processing the giant volume of miscellaneous information distributed in the Web, a vertical search engine targets at identifying relevant information in specific domains or topics and eventually provides users with up-to-date information, highly focused insights and actionable knowledge representation. As the mobile device gets more popular, the nature of the search is changing. So, acquiring information on a mobile device poses unique requirements on traditional search engines, which will potentially change every feature they used to have. To summarize, users are strongly expecting search engines that can satisfy their individual information needs, adapt their current situation, and present highly personalized search results. ^ In my research, the next generation vertical search engine means to utilize and enrich existing domain information to close the loop of vertical search engine's system that mutually facilitate knowledge discovering, actionable information extraction, and user interests modeling and recommendation. I investigate three problems in which domain taxonomy plays an important role, including taxonomy generation using a vertical search engine, actionable information extraction based on domain taxonomy, and the use of ensemble taxonomy to catch user's interests. As the fundamental theory, ultra-metric, dendrogram, and hierarchical clustering are intensively discussed. Methods on taxonomy generation using my research on hierarchical clustering are developed. The related vertical search engine techniques are practically used in Disaster Management Domain. Especially, three disaster information management systems are developed and represented as real use cases of my research work.^
Resumo:
In the last decade, large numbers of social media services have emerged and been widely used in people's daily life as important information sharing and acquisition tools. With a substantial amount of user-contributed text data on social media, it becomes a necessity to develop methods and tools for text analysis for this emerging data, in order to better utilize it to deliver meaningful information to users. ^ Previous work on text analytics in last several decades is mainly focused on traditional types of text like emails, news and academic literatures, and several critical issues to text data on social media have not been well explored: 1) how to detect sentiment from text on social media; 2) how to make use of social media's real-time nature; 3) how to address information overload for flexible information needs. ^ In this dissertation, we focus on these three problems. First, to detect sentiment of text on social media, we propose a non-negative matrix tri-factorization (tri-NMF) based dual active supervision method to minimize human labeling efforts for the new type of data. Second, to make use of social media's real-time nature, we propose approaches to detect events from text streams on social media. Third, to address information overload for flexible information needs, we propose two summarization framework, dominating set based summarization framework and learning-to-rank based summarization framework. The dominating set based summarization framework can be applied for different types of summarization problems, while the learning-to-rank based summarization framework helps utilize the existing training data to guild the new summarization tasks. In addition, we integrate these techneques in an application study of event summarization for sports games as an example of how to better utilize social media data. ^
Resumo:
In the last decade, large numbers of social media services have emerged and been widely used in people's daily life as important information sharing and acquisition tools. With a substantial amount of user-contributed text data on social media, it becomes a necessity to develop methods and tools for text analysis for this emerging data, in order to better utilize it to deliver meaningful information to users. Previous work on text analytics in last several decades is mainly focused on traditional types of text like emails, news and academic literatures, and several critical issues to text data on social media have not been well explored: 1) how to detect sentiment from text on social media; 2) how to make use of social media's real-time nature; 3) how to address information overload for flexible information needs. In this dissertation, we focus on these three problems. First, to detect sentiment of text on social media, we propose a non-negative matrix tri-factorization (tri-NMF) based dual active supervision method to minimize human labeling efforts for the new type of data. Second, to make use of social media's real-time nature, we propose approaches to detect events from text streams on social media. Third, to address information overload for flexible information needs, we propose two summarization framework, dominating set based summarization framework and learning-to-rank based summarization framework. The dominating set based summarization framework can be applied for different types of summarization problems, while the learning-to-rank based summarization framework helps utilize the existing training data to guild the new summarization tasks. In addition, we integrate these techneques in an application study of event summarization for sports games as an example of how to better utilize social media data.