1 resultado para P plus L
em Digital Commons at Florida International University
Resumo:
All pathogens require high energetic influxes to counterattack the host immune system and without this energy bacterial infections are easily cleared. This study is an investigation into one highly bioenergetic pathway in Pseudomonas aeruginosa involving the amino acid L-serine and the enzyme L-serine deaminase (L-SD). P. aeruginosa is an opportunistic pathogen causing infections in patients with compromised immune systems as well as patients with cystic fibrosis. Recent evidence has linked L-SD directly to the pathogenicity of several organisms including but not limited to Campylobacter jejuni, Mycobacterium bovis, Streptococcus pyogenes, and Yersinia pestis. We hypothesized that P. aeruginosa L-SD is likely to be critical for its virulence. Genome sequence analysis revealed the presence of two L-SD homo logs encoded by sdaA and sdaB. We analyzed the ability of P. aeruginosa to utilize serine and the role of SdaA and SdaB in serine deamination by comparing mutant strains of sdaA (PAOsdaA) and sdaB (PAOsdaB) with their isogenic parent P. aeruginosa P AO 1. We demonstrated that P. aeruginosa is unable to use serine as a sole carbon source. However, serine utilization is enhanced in the presence of glycine and this glycine-dependent induction of L-SD activity requires the inducer serine. The amino acid leucine was shown to inhibit L-SD activity from both SdaA and SdaB and the net contribution to L-serine deamination by SdaA and SdaB was ascertained at 34% and 66 %, respectively. These results suggest that P. aeruginosa LSD is quite different from the characterized E. coli L-SD that is glycine-independent but leucine-dependent for activation. Growth mutants able to use serine as a sole carbon source were also isolated and in addition, suicide vectors were constructed which allow for selective mutation of the sdaA and sdaB genes on any P. aeruginosa strain of interest. Future studies with a double mutant will reveal the importance of these genes for pathogenicity.