10 resultados para Optimal management
em Digital Commons at Florida International University
Resumo:
Next-generation integrated wireless local area network (WLAN) and 3G cellular networks aim to take advantage of the roaming ability in a cellular network and the high data rate services of a WLAN. To ensure successful implementation of an integrated network, many issues must be carefully addressed, including network architecture design, resource management, quality-of-service (QoS), call admission control (CAC) and mobility management. ^ This dissertation focuses on QoS provisioning, CAC, and the network architecture design in the integration of WLANs and cellular networks. First, a new scheduling algorithm and a call admission control mechanism in IEEE 802.11 WLAN are presented to support multimedia services with QoS provisioning. The proposed scheduling algorithms make use of the idle system time to reduce the average packet loss of realtime (RT) services. The admission control mechanism provides long-term transmission quality for both RT and NRT services by ensuring the packet loss ratio for RT services and the throughput for non-real-time (NRT) services. ^ A joint CAC scheme is proposed to efficiently balance traffic load in the integrated environment. A channel searching and replacement algorithm (CSR) is developed to relieve traffic congestion in the cellular network by using idle channels in the WLAN. The CSR is optimized to minimize the system cost in terms of the blocking probability in the interworking environment. Specifically, it is proved that there exists an optimal admission probability for passive handoffs that minimizes the total system cost. Also, a method of searching the probability is designed based on linear-programming techniques. ^ Finally, a new integration architecture, Hybrid Coupling with Radio Access System (HCRAS), is proposed for lowering the average cost of intersystem communication (IC) and the vertical handoff latency. An analytical model is presented to evaluate the system performance of the HCRAS in terms of the intersystem communication cost function and the handoff cost function. Based on this model, an algorithm is designed to determine the optimal route for each intersystem communication. Additionally, a fast handoff algorithm is developed to reduce the vertical handoff latency.^
Resumo:
Miami-Dade County implemented a series of water conservation programs, which included rebate/exchange incentives to encourage the use of high efficiency aerators (AR), showerheads (SH), toilets (HET) and clothes washers (HEW), to respond to the environmental sustainability issue in urban areas. This study first used panel data analysis of water consumption to evaluate the performance and actual water savings of individual programs. Integrated water demand model has also been developed for incorporating property’s physical characteristics into the water consumption profiles. Life cycle assessment (with emphasis on end-use stage in water system) of water intense appliances was conducted to determine the environmental impacts brought by each practice. Approximately 6 to 10 % of water has been saved in the first and second year of implementation of high efficiency appliances, and with continuing savings in the third and fourth years. Water savings (gallons per household per day) for water efficiency appliances were observed at 28 (11.1%) for SH, 34.7 (13.3%) for HET, and 39.7 (14.5%) for HEW. Furthermore, the estimated contributions of high efficiency appliances for reducing water demand in the integrated water demand model were between 5 and 19% (highest in the AR program). Results indicated that adoption of more than one type of water efficiency appliance could significantly reduce residential water demand. For the sustainable water management strategies, the appropriate water conservation rate was projected to be 1 to 2 million gallons per day (MGD) through 2030. With 2 MGD of water savings, the estimated per capita water use (GPCD) could be reduced from approximately 140 to 122 GPCD. Additional efforts are needed to reduce the water demand to US EPA’s “Water Sense” conservation levels of 70 GPCD by 2030. Life cycle assessment results showed that environmental impacts (water and energy demands and greenhouse gas emissions) from end-use and demand phases are most significant within the water system, particularly due to water heating (73% for clothes washer and 93% for showerhead). Estimations of optimal lifespan for appliances (8 to 21 years) implied that earlier replacement with efficiency models is encouraged in order to minimize the environmental impacts brought by current practice.
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity.^ We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. ^ This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.^
Resumo:
This dissertation consists of three essays on different aspects of water management. The first essay focuses on the sustainability of freshwater use by introducing the notion that altruistic parents do bequeath economic assets for their offspring. Constructing a two-period, over-lapping generational model, an optimal ratio of consumption and pollution for old and young generations in each period is determined. Optimal levels of water consumption and pollution change according to different parameters, such as, altruistic degree, natural recharge rate, and population growth. The second essay concerns water sharing between countries in the case of trans-boundary river basins. The paper recognizes that side payments fail to forge water-sharing agreement among the international community and that downstream countries have weak bargaining power. An interconnected game approach is developed by linking the water allocation issue with other non-water issues such as trade or border security problems, creating symmetry between countries in bargaining power. An interconnected game forces two countries to at least partially cooperate under some circumstances. The third essay introduces the concept of virtual water (VW) into a traditional international trade model in order to estimate water savings for a water scarce country. A two country, two products and two factors trade model is developed, which includes not only consumers and producer's surplus, but also environmental externality of water use. The model shows that VW trade saves water and increases global and local welfare. This study should help policy makers to design appropriate subsidy or tax policy to promote water savings especially in water scarce countries.^
Resumo:
Adequate care of type 2 diabetes is reflected by the individual’s adherence to dietary guidance; yet, few patients are engaged in diabetes self-care at the recommended level, regardless of race/ethnicity. Few studies on the effect of dietary medical advice on diabetes self-management (DSM) and glycemic control have been conducted on Haitian and African American adults with type 2 diabetes. These relationships were assessed in total of 254 Blacks with type 2 diabetes (Haitian Americans = 129; African Americans = 125) recruited from Miami-Dade and Broward Counties, Florida by community outreach methods. Although dietary advice received was not significantly different between the two Black ethnicities, given advice “to follow a diet” as a predictor of “using food groups” was significant for Haitian Americans, but not for African Americans. Haitian Americans who were advised to follow a diet were approximately 3 times more likely to sometimes or often use food groups (or exchange lists) in planning meals. Less than optimal glycemic control (A1C > 7.2) was inversely related to DSM for African Americans; but the relationship was not significant for Haitian Americans. A one unit increase in DSM score decreased the odds ratio point estimate of having less than optimal glycemic control (A1C > 7.2%) by a factor of 0.94 in African Americans. These results suggest that medical advice for diet plans may not be communicated effectively for DSM for some races/ethnicities. Research aimed at uncovering the enablers and barriers of diet management specific to Black ethnicities with type 2 diabetes is recommended.
Resumo:
The presence of inhibitory substances in biological forensic samples has, and continues to affect the quality of the data generated following DNA typing processes. Although the chemistries used during the procedures have been enhanced to mitigate the effects of these deleterious compounds, some challenges remain. Inhibitors can be components of the samples, the substrate where samples were deposited or chemical(s) associated to the DNA purification step. Therefore, a thorough understanding of the extraction processes and their ability to handle the various types of inhibitory substances can help define the best analytical processing for any given sample. A series of experiments were conducted to establish the inhibition tolerance of quantification and amplification kits using common inhibitory substances in order to determine if current laboratory practices are optimal for identifying potential problems associated with inhibition. DART mass spectrometry was used to determine the amount of inhibitor carryover after sample purification, its correlation to the initial inhibitor input in the sample and the overall effect in the results. Finally, a novel alternative at gathering investigative leads from samples that would otherwise be ineffective for DNA typing due to the large amounts of inhibitory substances and/or environmental degradation was tested. This included generating data associated with microbial peak signatures to identify locations of clandestine human graves. Results demonstrate that the current methods for assessing inhibition are not necessarily accurate, as samples that appear inhibited in the quantification process can yield full DNA profiles, while those that do not indicate inhibition may suffer from lowered amplification efficiency or PCR artifacts. The extraction methods tested were able to remove >90% of the inhibitors from all samples with the exception of phenol, which was present in variable amounts whenever the organic extraction approach was utilized. Although the results attained suggested that most inhibitors produce minimal effect on downstream applications, analysts should practice caution when selecting the best extraction method for particular samples, as casework DNA samples are often present in small quantities and can contain an overwhelming amount of inhibitory substances.
Resumo:
The aim of this work is to present a methodology to develop cost-effective thermal management solutions for microelectronic devices, capable of removing maximum amount of heat and delivering maximally uniform temperature distributions. The topological and geometrical characteristics of multiple-story three-dimensional branching networks of microchannels were developed using multi-objective optimization. A conjugate heat transfer analysis software package and an automatic 3D microchannel network generator were developed and coupled with a modified version of a particle-swarm optimization algorithm with a goal of creating a design tool for 3D networks of optimized coolant flow passages. Numerical algorithms in the conjugate heat transfer solution package include a quasi-ID thermo-fluid solver and a steady heat diffusion solver, which were validated against results from high-fidelity Navier-Stokes equations solver and analytical solutions for basic fluid dynamics test cases. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with 3D microchannel networks, with pumping power requirements up to 50% lower with respect to currently used high-performance cooling technologies.
Resumo:
This dissertation consists of three essays on different aspects of water management. The first essay focuses on the sustainability of freshwater use by introducing the notion that altruistic parents do bequeath economic assets for their offspring. Constructing a two-period, over-lapping generational model, an optimal ratio of consumption and pollution for old and young generations in each period is determined. Optimal levels of water consumption and pollution change according to different parameters, such as, altruistic degree, natural recharge rate, and population growth. The second essay concerns water sharing between countries in the case of trans-boundary river basins. The paper recognizes that side payments fail to forge water-sharing agreement among the international community and that downstream countries have weak bargaining power. An interconnected game approach is developed by linking the water allocation issue with other non-water issues such as trade or border security problems, creating symmetry between countries in bargaining power. An interconnected game forces two countries to at least partially cooperate under some circumstances. The third essay introduces the concept of virtual water (VW) into a traditional international trade model in order to estimate water savings for a water scarce country. A two country, two products and two factors trade model is developed, which includes not only consumers and producer’s surplus, but also environmental externality of water use. The model shows that VW trade saves water and increases global and local welfare. This study should help policy makers to design appropriate subsidy or tax policy to promote water savings especially in water scarce countries.
Resumo:
The presence of inhibitory substances in biological forensic samples has, and continues to affect the quality of the data generated following DNA typing processes. Although the chemistries used during the procedures have been enhanced to mitigate the effects of these deleterious compounds, some challenges remain. Inhibitors can be components of the samples, the substrate where samples were deposited or chemical(s) associated to the DNA purification step. Therefore, a thorough understanding of the extraction processes and their ability to handle the various types of inhibitory substances can help define the best analytical processing for any given sample. A series of experiments were conducted to establish the inhibition tolerance of quantification and amplification kits using common inhibitory substances in order to determine if current laboratory practices are optimal for identifying potential problems associated with inhibition. DART mass spectrometry was used to determine the amount of inhibitor carryover after sample purification, its correlation to the initial inhibitor input in the sample and the overall effect in the results. Finally, a novel alternative at gathering investigative leads from samples that would otherwise be ineffective for DNA typing due to the large amounts of inhibitory substances and/or environmental degradation was tested. This included generating data associated with microbial peak signatures to identify locations of clandestine human graves. Results demonstrate that the current methods for assessing inhibition are not necessarily accurate, as samples that appear inhibited in the quantification process can yield full DNA profiles, while those that do not indicate inhibition may suffer from lowered amplification efficiency or PCR artifacts. The extraction methods tested were able to remove >90% of the inhibitors from all samples with the exception of phenol, which was present in variable amounts whenever the organic extraction approach was utilized. Although the results attained suggested that most inhibitors produce minimal effect on downstream applications, analysts should practice caution when selecting the best extraction method for particular samples, as casework DNA samples are often present in small quantities and can contain an overwhelming amount of inhibitory substances.^
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity. We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.