11 resultados para Optimal fusion performance
em Digital Commons at Florida International University
Resumo:
The current mobile networks don't offer sufficient data rates to support multimedia intensive applications in development for multifunctional mobile devices. Ultra wideband (UWB) wireless technology is being considered as the solution to overcome data rate bottlenecks in the current mobile networks. UWB is able to achieve such high data transmission rates because it transmits data over a very large chunk of the frequency spectrum. As currently approved by the U.S. Federal Communication Commission it utilizes 7.5 GHz of spectrum between 3.1 GHz and 10.6 GHz. ^ Successful transmission and reception of information data using UWB wireless technology in mobile devices, requires an antenna that has linear phase, low dispersion and a voltage standing wave ratio (VSWR) ≤ 2 throughout the entire frequency band. Compatibility with an integrated circuit requires an unobtrusive and electrically small design. The previous techniques that have been used to optimize the performance of UWB wireless systems, involve proper design of source pulses for optimal UWB performance. The goal of this work is directed towards the designing of antennas for personal communication devices, with optimal UWB bandwidth performance. Several techniques are proposed for optimal UWB bandwidth performance of the UWB antenna designs in this Ph.D. dissertation. ^ This Ph.D. dissertation presents novel UWB antenna designs for personal communication devices that have been characterized and optimized using the finite difference time domain (FDTD) technique. The antenna designs reported in this research are physically compact, planar for low profile use, with sufficient impedance bandwidth (>20%), antenna input impedance of 50-Ω, and an omni-directional (±1.5 dB) radiation pattern in the operating bandwidth. ^
Resumo:
In recent years, the internet has grown exponentially, and become more complex. This increased complexity potentially introduces more network-level instability. But for any end-to-end internet connection, maintaining the connection's throughput and reliability at a certain level is very important. This is because it can directly affect the connection's normal operation. Therefore, a challenging research task is to improve a network's connection performance by optimizing its throughput and reliability. This dissertation proposed an efficient and reliable transport layer protocol (called concurrent TCP (cTCP)), an extension of the current TCP protocol, to optimize end-to-end connection throughput and enhance end-to-end connection fault tolerance. The proposed cTCP protocol could aggregate multiple paths' bandwidth by supporting concurrent data transfer (CDT) on a single connection. Here concurrent data transfer was defined as the concurrent transfer of data from local hosts to foreign hosts via two or more end-to-end paths. An RTT-Based CDT mechanism, which was based on a path's RTT (Round Trip Time) to optimize CDT performance, was developed for the proposed cTCP protocol. This mechanism primarily included an RTT-Based load distribution and path management scheme, which was used to optimize connections' throughput and reliability. A congestion control and retransmission policy based on RTT was also provided. According to experiment results, under different network conditions, our RTT-Based CDT mechanism could acquire good CDT performance. Finally a CWND-Based CDT mechanism, which was based on a path's CWND (Congestion Window), to optimize CDT performance was introduced. This mechanism primarily included: a CWND-Based load allocation scheme, which assigned corresponding data to paths based on their CWND to achieve aggregate bandwidth; a CWND-Based path management, which was used to optimize connections' fault tolerance; and a congestion control and retransmission management policy, which was similar to regular TCP in its separate path handling. According to corresponding experiment results, this mechanism could acquire near-optimal CDT performance under different network conditions.
Resumo:
Since the seminal works of Markowitz (1952), Sharpe (1964), and Lintner (1965), numerous studies on portfolio selection and performance measure have been based upon the mean-variance framework. However, several researchers (e.g., Arditti (1967, and 1971), Samuelson (1970), and Rubinstein (1973)) argue that the higher moments cannot be neglected unless there is reason to believe that: (i) the asset returns are normally distributed and the investor's utility function is quadratic, or (ii) the empirical evidence demonstrates that higher moments are irrelevant to the investor's decision. Based on the same argument, this dissertation investigates the impact of higher moments of return distributions on three issues concerning the 14 international stock markets.^ First, the portfolio selection with skewness is determined using: the Polynomial Goal Programming in which investor preferences for skewness can be incorporated. The empirical findings suggest that the return distributions of international stock markets are not normally distributed, and that the incorporation of skewness into an investor's portfolio decision causes a major change in the construction of his optimal portfolio. The evidence also indicates that an investor will trade expected return of the portfolio for skewness. Moreover, when short sales are allowed, investors are better off as they attain higher expected return and skewness simultaneously.^ Second, the performance of international stock markets are evaluated using two types of performance measures: (i) the two-moment performance measures of Sharpe (1966), and Treynor (1965), and (ii) the higher-moment performance measures of Prakash and Bear (1986), and Stephens and Proffitt (1991). The empirical evidence indicates that higher moments of return distributions are significant and relevant to the investor's decision. Thus, the higher moment performance measures should be more appropriate to evaluate the performances of international stock markets. The evidence also indicates that various measures provide a vastly different performance ranking of the markets, albeit in the same direction.^ Finally, the inter-temporal stability of the international stock markets is investigated using the Parhizgari and Prakash (1989) algorithm for the Sen and Puri (1968) test which accounts for non-normality of return distributions. The empirical finding indicates that there is strong evidence to support the stability in international stock market movements. However, when the Anderson test which assumes normality of return distributions is employed, the stability in the correlation structure is rejected. This suggests that the non-normality of the return distribution is an important factor that cannot be ignored in the investigation of inter-temporal stability of international stock markets. ^
Resumo:
This research is based on the premises that teams can be designed to optimize its performance, and appropriate team coordination is a significant factor to team outcome performance. Contingency theory argues that the effectiveness of a team depends on the right fit of the team design factors to the particular job at hand. Therefore, organizations need computational tools capable of predict the performance of different configurations of teams. This research created an agent-based model of teams called the Team Coordination Model (TCM). The TCM estimates the coordination load and performance of a team, based on its composition, coordination mechanisms, and job’s structural characteristics. The TCM can be used to determine the team’s design characteristics that most likely lead the team to achieve optimal performance. The TCM is implemented as an agent-based discrete-event simulation application built using JAVA and Cybele Pro agent architecture. The model implements the effect of individual team design factors on team processes, but the resulting performance emerges from the behavior of the agents. These team member agents use decision making, and explicit and implicit mechanisms to coordinate the job. The model validation included the comparison of the TCM’s results with statistics from a real team and with the results predicted by the team performance literature. An illustrative 26-1 fractional factorial experimental design demonstrates the application of the simulation model to the design of a team. The results from the ANOVA analysis have been used to recommend the combination of levels of the experimental factors that optimize the completion time for a team that runs sailboats races. This research main contribution to the team modeling literature is a model capable of simulating teams working on complex job environments. The TCM implements a stochastic job structure model capable of capturing some of the complexity not capture by current models. In a stochastic job structure, the tasks required to complete the job change during the team execution of the job. This research proposed three new types of dependencies between tasks required to model a job as a stochastic structure. These dependencies are conditional sequential, single-conditional sequential, and the merge dependencies.
Design optimization of modern machine drive systems for maximum fault tolerant and optimal operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity.^ We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. ^ This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.^
Resumo:
Dr. Kenneth Murray, Ph.D. Assistant Professor of Biology Ribonuclease P (RNase P) is an essential and ubiquitous ribonucleoprotein enzyme primarily responsible for cleaving 5' leader sequences during tRNA maturation. RNase P comprises one essential RNA, and one protein subunit in eubacteria, five proteins in archaea, and ten in humans. Due to its homology to human RNase P, its higher stability, and simpler structure; extensive studies have been conducted utilizing the enzyme from the archaeal hyperthermophile, Pyrococcus furious (Pfu). Previous studies identified only four protein subunits associated with the archaeal RNase P. This fourprotein reconstituted particle, however, had an optimal temperature of 55°C, compared to the optimal 70°C of the wild type RNase P. Additional probing of the organism's genome database revealed a fifth RNase P protein subunit, RPP38. To facilitate further investigations of Pfu RNase complexes, we sought to develop a protocol for the purification ofRPP38. Our results, presented herein, represent the first known expression.purification protocol developed for RPP38. Briefly, we synthesized an N-terminal6x-His RPP38 fusion construct, reengineered to contain a Tobacco Etch Virus (TEV) protease cleavage site. Purification was achieved via immobilized metal affinity chromatography and reversed phase high performance liquid chromatography. Following purification the 6X-His affinity tag was removed via TEV cleavage, thus regenerating the native RPP38 protein. Purity and identity of RPP38 were confirmed by sodium dodecylsulfate - polyacrylamide gel electrophoresis and mass spectrometry, respectively. Our work is expected to contribute to our understanding ofRNase P function and tRNA maturation by providing an efficient, facile technique to express and purify Pfu RNase protein RPP38 as a means to facilitate structural and functional analyses.
Resumo:
The objective in this work is to build a rapid and automated numerical design method that makes optimal design of robots possible. In this work, two classes of optimal robot design problems were specifically addressed: (1) When the objective is to optimize a pre-designed robot, and (2) when the goal is to design an optimal robot from scratch. In the first case, to reach the optimum design some of the critical dimensions or specific measures to optimize (design parameters) are varied within an established range. Then the stress is calculated as a function of the design parameter(s), the design parameter(s) that optimizes a pre-determined performance index provides the optimum design. In the second case, this work focuses on the development of an automated procedure for the optimal design of robotic systems. For this purpose, Pro/Engineer© and MatLab© software packages are integrated to draw the robot parts, optimize them, and then re-draw the optimal system parts.
Resumo:
The purpose of this research is to develop an optimal kernel which would be used in a real-time engineering and communications system. Since the application is a real-time system, relevant real-time issues are studied in conjunction with kernel related issues. The emphasis of the research is the development of a kernel which would not only adhere to the criteria of a real-time environment, namely determinism and performance, but also provide the flexibility and portability associated with non-real-time environments. The essence of the research is to study how the features found in non-real-time systems could be applied to the real-time system in order to generate an optimal kernel which would provide flexibility and architecture independence while maintaining the performance needed by most of the engineering applications. Traditionally, development of real-time kernels has been done using assembly language. By utilizing the powerful constructs of the C language, a real-time kernel was developed which addressed the goals of flexibility and portability while still meeting the real-time criteria. The implementation of the kernel is carried out using the powerful 68010/20/30/40 microprocessor based systems.
Design Optimization of Modern Machine-drive Systems for Maximum Fault Tolerant and Optimal Operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity. We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.