11 resultados para Optimal Design
em Digital Commons at Florida International University
Resumo:
The objective in this work is to build a rapid and automated numerical design method that makes optimal design of robots possible. In this work, two classes of optimal robot design problems were specifically addressed: (1) When the objective is to optimize a pre-designed robot, and (2) when the goal is to design an optimal robot from scratch. In the first case, to reach the optimum design some of the critical dimensions or specific measures to optimize (design parameters) are varied within an established range. Then the stress is calculated as a function of the design parameter(s), the design parameter(s) that optimizes a pre-determined performance index provides the optimum design. In the second case, this work focuses on the development of an automated procedure for the optimal design of robotic systems. For this purpose, Pro/Engineer© and MatLab© software packages are integrated to draw the robot parts, optimize them, and then re-draw the optimal system parts.
Resumo:
The purpose of this thesis was to identify the optimal design parameters for a jet nozzle which obtains a local maximum shear stress while maximizing the average shear stress on the floor of a fluid filled system. This research examined how geometric parameters of a jet nozzle, such as the nozzle's angle, height, and orifice, influence the shear stress created on the bottom surface of a tank. Simulations were run using a Computational Fluid Dynamics (CFD) software package to determine shear stress values for a parameterized geometric domain including the jet nozzle. A response surface was created based on the shear stress values obtained from 112 simulated designs. A multi-objective optimization software utilized the response surface to generate designs with the best combination of parameters to achieve maximum shear stress and maximum average shear stress. The optimal configuration of parameters achieved larger shear stress values over a commercially available design.
Resumo:
The total time a customer spends in the business process system, called the customer cycle-time, is a major contributor to overall customer satisfaction. Business process analysts and designers are frequently asked to design process solutions with optimal performance. Simulation models have been very popular to quantitatively evaluate the business processes; however, simulation is time-consuming and it also requires extensive modeling experiences to develop simulation models. Moreover, simulation models neither provide recommendations nor yield optimal solutions for business process design. A queueing network model is a good analytical approach toward business process analysis and design, and can provide a useful abstraction of a business process. However, the existing queueing network models were developed based on telephone systems or applied to manufacturing processes in which machine servers dominate the system. In a business process, the servers are usually people. The characteristics of human servers should be taken into account by the queueing model, i.e. specialization and coordination. ^ The research described in this dissertation develops an open queueing network model to do a quick analysis of business processes. Additionally, optimization models are developed to provide optimal business process designs. The queueing network model extends and improves upon existing multi-class open-queueing network models (MOQN) so that the customer flow in the human-server oriented processes can be modeled. The optimization models help business process designers to find the optimal design of a business process with consideration of specialization and coordination. ^ The main findings of the research are, first, parallelization can reduce the cycle-time for those customer classes that require more than one parallel activity; however, the coordination time due to the parallelization overwhelms the savings from parallelization under the high utilization servers since the waiting time significantly increases, thus the cycle-time increases. Third, the level of industrial technology employed by a company and coordination time to mange the tasks have strongest impact on the business process design; as the level of industrial technology employed by the company is high; more division is required to improve the cycle-time; as the coordination time required is high; consolidation is required to improve the cycle-time. ^
Design optimization of modern machine drive systems for maximum fault tolerant and optimal operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^
Design Optimization of Modern Machine-drive Systems for Maximum Fault Tolerant and Optimal Operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.
Resumo:
Next-generation integrated wireless local area network (WLAN) and 3G cellular networks aim to take advantage of the roaming ability in a cellular network and the high data rate services of a WLAN. To ensure successful implementation of an integrated network, many issues must be carefully addressed, including network architecture design, resource management, quality-of-service (QoS), call admission control (CAC) and mobility management. ^ This dissertation focuses on QoS provisioning, CAC, and the network architecture design in the integration of WLANs and cellular networks. First, a new scheduling algorithm and a call admission control mechanism in IEEE 802.11 WLAN are presented to support multimedia services with QoS provisioning. The proposed scheduling algorithms make use of the idle system time to reduce the average packet loss of realtime (RT) services. The admission control mechanism provides long-term transmission quality for both RT and NRT services by ensuring the packet loss ratio for RT services and the throughput for non-real-time (NRT) services. ^ A joint CAC scheme is proposed to efficiently balance traffic load in the integrated environment. A channel searching and replacement algorithm (CSR) is developed to relieve traffic congestion in the cellular network by using idle channels in the WLAN. The CSR is optimized to minimize the system cost in terms of the blocking probability in the interworking environment. Specifically, it is proved that there exists an optimal admission probability for passive handoffs that minimizes the total system cost. Also, a method of searching the probability is designed based on linear-programming techniques. ^ Finally, a new integration architecture, Hybrid Coupling with Radio Access System (HCRAS), is proposed for lowering the average cost of intersystem communication (IC) and the vertical handoff latency. An analytical model is presented to evaluate the system performance of the HCRAS in terms of the intersystem communication cost function and the handoff cost function. Based on this model, an algorithm is designed to determine the optimal route for each intersystem communication. Additionally, a fast handoff algorithm is developed to reduce the vertical handoff latency.^
Resumo:
This dissertation established a software-hardware integrated design for a multisite data repository in pediatric epilepsy. A total of 16 institutions formed a consortium for this web-based application. This innovative fully operational web application allows users to upload and retrieve information through a unique human-computer graphical interface that is remotely accessible to all users of the consortium. A solution based on a Linux platform with My-SQL and Personal Home Page scripts (PHP) has been selected. Research was conducted to evaluate mechanisms to electronically transfer diverse datasets from different hospitals and collect the clinical data in concert with their related functional magnetic resonance imaging (fMRI). What was unique in the approach considered is that all pertinent clinical information about patients is synthesized with input from clinical experts into 4 different forms, which were: Clinical, fMRI scoring, Image information, and Neuropsychological data entry forms. A first contribution of this dissertation was in proposing an integrated processing platform that was site and scanner independent in order to uniformly process the varied fMRI datasets and to generate comparative brain activation patterns. The data collection from the consortium complied with the IRB requirements and provides all the safeguards for security and confidentiality requirements. An 1-MR1-based software library was used to perform data processing and statistical analysis to obtain the brain activation maps. Lateralization Index (LI) of healthy control (HC) subjects in contrast to localization-related epilepsy (LRE) subjects were evaluated. Over 110 activation maps were generated, and their respective LIs were computed yielding the following groups: (a) strong right lateralization: (HC=0%, LRE=18%), (b) right lateralization: (HC=2%, LRE=10%), (c) bilateral: (HC=20%, LRE=15%), (d) left lateralization: (HC=42%, LRE=26%), e) strong left lateralization: (HC=36%, LRE=31%). Moreover, nonlinear-multidimensional decision functions were used to seek an optimal separation between typical and atypical brain activations on the basis of the demographics as well as the extent and intensity of these brain activations. The intent was not to seek the highest output measures given the inherent overlap of the data, but rather to assess which of the many dimensions were critical in the overall assessment of typical and atypical language activations with the freedom to select any number of dimensions and impose any degree of complexity in the nonlinearity of the decision space.
Resumo:
The span of control is the most discussed single concept in classical and modern management theory. In specifying conditions for organizational effectiveness, the span of control has generally been regarded as a critical factor. Existing research work has focused mainly on qualitative methods to analyze this concept, for example heuristic rules based on experiences and/or intuition. This research takes a quantitative approach to this problem and formulates it as a binary integer model, which is used as a tool to study the organizational design issue. This model considers a range of requirements affecting management and supervision of a given set of jobs in a company. These decision variables include allocation of jobs to workers, considering complexity and compatibility of each job with respect to workers, and the requirement of management for planning, execution, training, and control activities in a hierarchical organization. The objective of the model is minimal operations cost, which is the sum of supervision costs at each level of the hierarchy, and the costs of workers assigned to jobs. The model is intended for application in the make-to-order industries as a design tool. It could also be applied to make-to-stock companies as an evaluation tool, to assess the optimality of their current organizational structure. Extensive experiments were conducted to validate the model, to study its behavior, and to evaluate the impact of changing parameters with practical problems. This research proposes a meta-heuristic approach to solving large-size problems, based on the concept of greedy algorithms and the Meta-RaPS algorithm. The proposed heuristic was evaluated with two measures of performance: solution quality and computational speed. The quality is assessed by comparing the obtained objective function value to the one achieved by the optimal solution. The computational efficiency is assessed by comparing the computer time used by the proposed heuristic to the time taken by a commercial software system. Test results show the proposed heuristic procedure generates good solutions in a time-efficient manner.
Resumo:
Computing devices have become ubiquitous in our technologically-advanced world, serving as vehicles for software applications that provide users with a wide array of functions. Among these applications are electronic learning software, which are increasingly being used to educate and evaluate individuals ranging from grade school students to career professionals. This study will evaluate the design and implementation of user interfaces in these pieces of software. Specifically, it will explore how these interfaces can be developed to facilitate the use of electronic learning software by children. In order to do this, research will be performed in the area of human-computer interaction, focusing on cognitive psychology, user interface design, and software development. This information will be analyzed in order to design a user interface that provides an optimal user experience for children. This group will test said interface, as well as existing applications, in order to measure its usability. The objective of this study is to design a user interface that makes electronic learning software more usable for children, facilitating their learning process and increasing their academic performance. This study will be conducted by using the Adobe Creative Suite to design the user interface and an Integrated Development Environment to implement functionality. These are digital tools that are available on computing devices such as desktop computers, laptops, and smartphones, which will be used for the development of software. By using these tools, I hope to create a user interface for electronic learning software that promotes usability while maintaining functionality. This study will address the increasing complexity of computing software seen today – an issue that has risen due to the progressive implementation of new functionality. This issue is having a detrimental effect on the usability of electronic learning software, increasing the learning curve for targeted users such as children. As we make electronic learning software an integral part of educational programs in our schools, it is important to address this in order to guarantee them a successful learning experience.
Resumo:
Computing devices have become ubiquitous in our technologically-advanced world, serving as vehicles for software applications that provide users with a wide array of functions. Among these applications are electronic learning software, which are increasingly being used to educate and evaluate individuals ranging from grade school students to career professionals. This study will evaluate the design and implementation of user interfaces in these pieces of software. Specifically, it will explore how these interfaces can be developed to facilitate the use of electronic learning software by children. In order to do this, research will be performed in the area of human-computer interaction, focusing on cognitive psychology, user interface design, and software development. This information will be analyzed in order to design a user interface that provides an optimal user experience for children. This group will test said interface, as well as existing applications, in order to measure its usability. The objective of this study is to design a user interface that makes electronic learning software more usable for children, facilitating their learning process and increasing their academic performance. This study will be conducted by using the Adobe Creative Suite to design the user interface and an Integrated Development Environment to implement functionality. These are digital tools that are available on computing devices such as desktop computers, laptops, and smartphones, which will be used for the development of software. By using these tools, I hope to create a user interface for electronic learning software that promotes usability while maintaining functionality. This study will address the increasing complexity of computing software seen today – an issue that has risen due to the progressive implementation of new functionality. This issue is having a detrimental effect on the usability of electronic learning software, increasing the learning curve for targeted users such as children. As we make electronic learning software an integral part of educational programs in our schools, it is important to address this in order to guarantee them a successful learning experience.
Resumo:
The objective of this study is to identify the optimal designs of converging-diverging supersonic and hypersonic nozzles that perform at maximum uniformity of thermodynamic and flow-field properties with respect to their average values at the nozzle exit. Since this is a multi-objective design optimization problem, the design variables used are parameters defining the shape of the nozzle. This work presents how variation of such parameters can influence the nozzle exit flow non-uniformities. A Computational Fluid Dynamics (CFD) software package, ANSYS FLUENT, was used to simulate the compressible, viscous gas flow-field in forty nozzle shapes, including the heat transfer analysis. The results of two turbulence models, k-e and k-ω, were computed and compared. With the analysis results obtained, the Response Surface Methodology (RSM) was applied for the purpose of performing a multi-objective optimization. The optimization was performed with ModeFrontier software package using Kriging and Radial Basis Functions (RBF) response surfaces. Final Pareto optimal nozzle shapes were then analyzed with ANSYS FLUENT to confirm the accuracy of the optimization process.