2 resultados para Optical Active Substance
em Digital Commons at Florida International University
Resumo:
Zinc is essential for the activity of thymulin, a thymic hormone involved in T-lymphocyte differentiation and activation. Zinc deficiency is widespread in populations with HIV infection, and HIV+ drug users are particularly susceptible to zinc deficiency and immune suppression. This dissertation explored the relationship of zinc-bound active thymulin to plasma zinc, CD4+ and CD8+ cell count, the CD4+/CD8+ ratio, and drug use in HIV-infected drug users. Zinc-bound active thymulin was assessed in plasma of HIV+ drug users who were participating in a 30 month zinc supplementation trial. Plasma from 80 participants at the 12 month visit, and 40 of these same participants, randomly selected, at the baseline visit were assessed for zinc-bound active thymulin levels using a modification of the rosette inhibition assay. Thymulin activity was directly associated with CD4+ cell count (β = 0.127, p = 0.002) and inversely associated with cocaine use (β = −0.908, p = 0.026; R2 = 0.188, p = 0.019) independent of HIV viral load, age, gender and antiretroviral use. An increase in thymulin activity was 1.4 times more likely when CD4+ cell count increased (OR = 1.402, 95%CI: 1.006–1.956), independent of change in viral load, antiretroviral use, and age. Participants who used cocaine consistently, were 7.6 times less likely to have an increase in thymulin activity (OR = 0.133, 95%CI: 0.017–1.061). There was a direct correlation between change in plasma zinc and change in zinc-bound active thymulin (r = 0.243, p = 0.13). Analysis of CD4+ cell count decline in 222 participants in the zinc supplementation trial across the 30 months showed that both crack cocaine use and heavy alcohol use accelerated CD4+ cell count decline. Thymulin activity is directly associated with HIV disease progression, measured by CD4+ cell count, and is depressed with cocaine use independent of antiretroviral use and HIV viral load. Cocaine and heavy alcohol accelerate CD4+ cell count decline. The effect of cocaine on thymic output requires further evaluation as a mechanism for the association of cocaine use with faster HIV disease progression.
Resumo:
Integrated on-chip optical platforms enable high performance in applications of high-speed all-optical or electro-optical switching, wide-range multi-wavelength on-chip lasing for communication, and lab-on-chip optical sensing. Integrated optical resonators with high quality factor are a fundamental component in these applications. Periodic photonic structures (photonic crystals) exhibit a photonic band gap, which can be used to manipulate photons in a way similar to the control of electrons in semiconductor circuits. This makes it possible to create structures with radically improved optical properties. Compared to silicon, polymers offer a potentially inexpensive material platform with ease of fabrication at low temperatures and a wide range of material properties when doped with nanocrystals and other molecules. In this research work, several polymer periodic photonic structures are proposed and investigated to improve optical confinement and optical sensing. We developed a fast numerical method for calculating the quality factor of a photonic crystal slab (PhCS) cavity. The calculation is implemented via a 2D-FDTD method followed by a post-process for cavity surface energy radiation loss. Computational time is saved and good accuracy is demonstrated compared to other published methods. Also, we proposed a novel concept of slot-PhCS which enhanced the energy density 20 times compared to traditional PhCS. It combines both advantages of the slot waveguide and photonic crystal to localize the high energy density in the low index material. This property could increase the interaction between light and material embedded with nanoparticles like quantum dots for active device development. We also demonstrated a wide range bandgap based on a one dimensional waveguide distributed Bragg reflector with high coupling to optical waveguides enabling it to be easily integrated with other optical components on the chip. A flexible polymer (SU8) grating waveguide is proposed as a force sensor. The proposed sensor can monitor nN range forces through its spectral shift. Finally, quantum dot - doped SU8 polymer structures are demonstrated by optimizing spin coating and UV exposure. Clear patterns with high emission spectra proved the compatibility of the fabrication process for applications in optical amplification and lasing.