3 resultados para Operating cost

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Choosing between Light Rail Transit (LRT) and Bus Rapid Transit (BRT) systems is often controversial and not an easy task for transportation planners who are contemplating the upgrade of their public transportation services. These two transit systems provide comparable services for medium-sized cities from the suburban neighborhood to the Central Business District (CBD) and utilize similar right-of-way (ROW) categories. The research is aimed at developing a method to assist transportation planners and decision makers in determining the most feasible system between LRT and BRT. ^ Cost estimation is a major factor when evaluating a transit system. Typically, LRT is more expensive to build and implement than BRT, but has significantly lower Operating and Maintenance (OM) costs than BRT. This dissertation examines the factors impacting capacity and costs, and develops cost models, which are a capacity-based cost estimate for the LRT and BRT systems. Various ROW categories and alignment configurations of the systems are also considered in the developed cost models. Kikuchi's fleet size model (1985) and cost allocation method are used to develop the cost models to estimate the capacity and costs. ^ The comparison between LRT and BRT are complicated due to many possible transportation planning and operation scenarios. In the end, a user-friendly computer interface integrated with the established capacity-based cost models, the LRT and BRT Cost Estimator (LBCostor), was developed by using Microsoft Visual Basic language to facilitate the process and will guide the users throughout the comparison operations. The cost models and the LBCostor can be used to analyze transit volumes, alignments, ROW configurations, number of stops and stations, headway, size of vehicle, and traffic signal timing at the intersections. The planners can make the necessary changes and adjustments depending on their operating practices. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The author, who has spent 30 years as an operations executive in the food service industry seeks to acquaint management with some of the basic economics of operating an employee food service. The article is designed to assist the executive in understanding the basic philosophies and concepts of providing a food service to employees, as well as the cost factors involved in giving that service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing need for fast sampling of explosives in high throughput areas has increased the demand for improved technology for the trace detection of illicit compounds. Detection of the volatiles associated with the presence of the illicit compounds offer a different approach for sensitive trace detection of these compounds without increasing the false positive alarm rate. This study evaluated the performance of non-contact sampling and detection systems using statistical analysis through the construction of Receiver Operating Characteristic (ROC) curves in real-world scenarios for the detection of volatiles in the headspace of smokeless powder, used as the model system for generalizing explosives detection. A novel sorbent coated disk coined planar solid phase microextraction (PSPME) was previously used for rapid, non-contact sampling of the headspace containers. The limits of detection for the PSPME coupled to IMS detection was determined to be 0.5-24 ng for vapor sampling of volatile chemical compounds associated with illicit compounds and demonstrated an extraction efficiency of three times greater than other commercially available substrates, retaining >50% of the analyte after 30 minutes sampling of an analyte spike in comparison to a non-detect for the unmodified filters. Both static and dynamic PSPME sampling was used coupled with two ion mobility spectrometer (IMS) detection systems in which 10-500 mg quantities of smokeless powders were detected within 5-10 minutes of static sampling and 1 minute of dynamic sampling time in 1-45 L closed systems, resulting in faster sampling and analysis times in comparison to conventional solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. Similar real-world scenarios were sampled in low and high clutter environments with zero false positive rates. Excellent PSPME-IMS detection of the volatile analytes were visualized from the ROC curves, resulting with areas under the curves (AUC) of 0.85-1.0 and 0.81-1.0 for portable and bench-top IMS systems, respectively. Construction of ROC curves were also developed for SPME-GC-MS resulting with AUC of 0.95-1.0, comparable with PSPME-IMS detection. The PSPME-IMS technique provides less false positive results for non-contact vapor sampling, cutting the cost and providing an effective sampling and detection needed in high-throughput scenarios, resulting in similar performance in comparison to well-established techniques with the added advantage of fast detection in the field.