11 resultados para ORGANIC-COMPOUND EMISSIONS

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a result of increased terrorist activity around the world, the development of a canine training aid suitable for daily military operations is necessary to provide effective canine explosive detection. Since the use of sniffer dogs has proven to be a reliable resource for the rapid detection of explosive volatiles organic compounds, the present study evaluated the ability of the Human Scent Collection System (HSCS) device for the creation of training aids for plasticized / tagged explosives, nitroglycerin and TNT containing explosives, and smokeless powders for canine training purposes. Through canine field testing, it was demonstrated that volatiles dynamically collected from real explosive material provided a positive canine response showing the effectiveness of the HSCS in creating canine training aids that can be used immediately or up to several weeks (3) after collection under proper storage conditions. These reliable non-hazardous training aids allow its use in areas where real explosive material aids are not practical and/or available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work was to develop a new methodology, which can be used to design new refrigerants that are better than the currently used refrigerants. The methodology draws some parallels with the general approach of computer aided molecular design. However, the mathematical way of representing the molecular structure of an organic compound and the use of meta models during the optimization process make it different. In essence, this approach aimed to generate molecules that conform to various property requirements that are known and specified a priori. A modified way of mathematically representing the molecular structure of an organic compound having up to four carbon atoms, along with atoms of other elements such as hydrogen, oxygen, fluorine, chlorine and bromine, was developed. The normal boiling temperature, enthalpy of vaporization, vapor pressure, tropospheric lifetime and biodegradability of 295 different organic compounds, were collected from open literature and data bases or estimated. Surrogate models linking the previously mentioned quantities with the molecular structure were developed. Constraints ensuring the generation of structurally feasible molecules were formulated and used in commercially available optimization algorithms to generate molecular structures of promising new refrigerants. This study was intended to serve as a proof-of-concept of designing refrigerants using the newly developed methodology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Detection canines represent the fastest and most versatile means of illicit material detection. This research endeavor in its most simplistic form is the improvement of detection canines through training, training aids, and calibration. This study focuses on developing a universal calibration compound for which all detection canines, regardless of detection substance, can be tested daily to ensure that they are working with acceptable parameters. Surrogate continuation aids (SCAs) were developed for peroxide based explosives along with the validation of the SCAs already developed within the International Forensic Research Institute (IFRI) prototype surrogate explosives kit. Storage parameters of the SCAs were evaluated to give recommendations to the detection canine community on the best possible training aid storage solution that minimizes the likelihood of contamination. Two commonly used and accepted detection canine imprinting methods were also evaluated for the speed in which the canine is trained and their reliability. As a result of the completion of this study, SCAs have been developed for explosive detection canine use covering: peroxide based explosives, TNT based explosives, nitroglycerin based explosives, tagged explosives, plasticized explosives, and smokeless powders. Through the use of these surrogate continuation aids a more uniform and reliable system of training can be implemented in the field than is currently used today. By examining the storage parameters of the SCAs, an ideal storage system has been developed using three levels of containment for the reduction of possible contamination. The developed calibration compound will ease the growing concerns over the legality and reliability of detection canine use by detailing the daily working parameters of the canine, allowing for Daubert rules of evidence admissibility to be applied. Through canine field testing, it has been shown that the IFRI SCAs outperform other commercially available training aids on the market. Additionally, of the imprinting methods tested, no difference was found in the speed in which the canines are trained or their reliability to detect illicit materials. Therefore, if the recommendations discovered in this study are followed, the detection canine community will greatly benefit through the use of scientifically validated training techniques and training aids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Everglades is a sub-tropical coastal wetland characterized among others by its hydrological features and deposits of peat. Formation and preservation of organic matter in soils and sediments in this wetland ecosystem is critical for its sustainability and hydrological processes are important divers in the origin, transport and fate of organic matter. With this in mind, organic matter dynamics in the greater Florida Everglades was studied though various organic geochemistry techniques, especially biomarkers, bulk and compound specific δ13C and δD isotope analysis. The main objectives were focused on how different hydrological regimes in this ecosystem control organic matter dynamics, such as the mobilization of particulate organic matter (POM) in freshwater marshes and estuaries, and how organic geochemistry techniques can be applied to reconstruct Everglades paleo-hydrology. For this purpose organic matter in typical vegetation, floc, surface soils, soil cores, and estuarine suspended particulates were characterized in samples selected along hydrological gradients in the Water Conservation Area 3, Shark River Slough and Taylor Slough. ^ This research focused on three general themes: (1) Assessment of the environmental dynamics and source-specific particulate organic carbon export in a mangrove-dominated estuary. (2) Assessment of the origin, transport and fate of organic matter in freshwater marsh. (3) Assessment of historical changes in hydrological conditions in the Everglades (paleo-hydrology) though biomarkes and compound specific isotope analyses. This study reports the first estimate of particulate organic carbon loss from mangrove ecosystems in the Everglades, provides evidence for particulate organic matter transport with regards to the formation of ridge and slough landscapes in the Everglades, and demonstrates the applicability of the combined biomarker and compound-specific stable isotope approach as a means to generate paleohydrological data in wetlands. The data suggests that: (1) Carbon loss from mangrove estuaries is roughly split 50/50 between dissolved and particulate carbon; (2) hydrological remobilization of particulate organic matter from slough to ridge environments may play an important role in the maintenance of the Everglades freshwater landscape; and (3) Historical changes in hydrology have resulted in significant vegetation shifts from historical slough type vegetation to present ridge type vegetation. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Detection canines represent the fastest and most versatile means of illicit material detection. This research endeavor in its most simplistic form is the improvement of detection canines through training, training aids, and calibration. This study focuses on developing a universal calibration compound for which all detection canines, regardless of detection substance, can be tested daily to ensure that they are working with acceptable parameters. Surrogate continuation aids (SCAs) were developed for peroxide based explosives along with the validation of the SCAs already developed within the International Forensic Research Institute (IFRI) prototype surrogate explosives kit. Storage parameters of the SCAs were evaluated to give recommendations to the detection canine community on the best possible training aid storage solution that minimizes the likelihood of contamination. Two commonly used and accepted detection canine imprinting methods were also evaluated for the speed in which the canine is trained and their reliability. As a result of the completion of this study, SCAs have been developed for explosive detection canine use covering: peroxide based explosives, TNT based explosives, nitroglycerin based explosives, tagged explosives, plasticized explosives, and smokeless powders. Through the use of these surrogate continuation aids a more uniform and reliable system of training can be implemented in the field than is currently used today. By examining the storage parameters of the SCAs, an ideal storage system has been developed using three levels of containment for the reduction of possible contamination. The developed calibration compound will ease the growing concerns over the legality and reliability of detection canine use by detailing the daily working parameters of the canine, allowing for Daubert rules of evidence admissibility to be applied. Through canine field testing, it has been shown that the IFRI SCAs outperform other commercially available training aids on the market. Additionally, of the imprinting methods tested, no difference was found in the speed in which the canines are trained or their reliability to detect illicit materials. Therefore, if the recommendations discovered in this study are followed, the detection canine community will greatly benefit through the use of scientifically validated training techniques and training aids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Everglades National Park (ENP) is about to undergo the world's largest wetland restoration with the aim of improving the quality, timing and distribution of water flow. The changes in water flow are hypothesized to alter the nutrient fluxes and organic matter (OM) dynamics within ENP, especially in the estuarine areas. This study used a multi-proxy approach of molecular markers and stable δ 13C isotope measurements, to determine the present day OM dynamics in ENP. ^ OM dynamics in wetland soils/sediments have proved to be difficult to understand using traditional geochemical approaches. These are often inadequate to describe the multitude of OM sources (e.g. higher land plant, emergent vegetation, submerged vegetation) to the soils/sediments and the complex diagenetic processes that can alter the OM characteristics. A multi-proxy approach, however, that incorporates both molecular level and bulk parameter information is ideal to comprehend complex OM dynamics in aquatic environments. Therefore, biomass-specific molecular markers or proxies can be useful in tracing the sources and processing of OM. This approach was used to examine the OM dynamics in the two major drainage basins, Shark River Slough and Taylor River Slough, of ENP. Freshwater to marine transects were sampled in both systems for soils/sediments and suspended particulate organic matter (SPOM) to be characterized through bulk OM analyses, lipid biomarker determinations (e.g. sterols, fatty acids, hydrocarbons and triterpenoids) and compound-specific stable carbon isotope (δ 13C) determinations. ^ One key accomplishment of the research was the assessment of a molecular marker proxy (Paq) to distinguish between emergent/higher plant vegetation from submerged vegetation within ENP. This proxy proved to be quite useful at tracing OM inputs to the soils/sediments of ENP. A second key accomplishment was the development of a 3-way model using vegetation specific molecular markers. This novel, descriptive model was successfully applied to the estuarine areas of Taylor and Shark River sloughs, providing clear evidence of mixing of freshwater, estuarine and marine derived OM in these areas. In addition, diagenetic transformations of OM in these estuaries were found to be quite different between Taylor and Shark Rivers, and are likely a result of OM quality and hydrological differences. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterotrophic bacteria are important decomposers and transformers of primary production and provide an important link between detritus and the aquatic food web. In seagrass ecosystems, much of seagrass primary production is unavailable through direct grazing and must undergo microbial reworking before seagrass production can enter the aquatic food web. The goal of my dissertation research is to understand better the role heterotrophic bacteria play in carbon cycling in seagrass estuaries. My dissertation research focuses on Florida Bay, a seagrass estuary that has experienced recent changes in carbon source availability, which may have altered ecosystem function. My dissertation research investigates the importance of seagrass, algal and/or cyanobacterial, and allochthonous-derived organic matter to heterotrophic bacteria in Florida Bay and helps establish the carbon base of the estuarine food web. ^ A three tiered approach to the study of heterotrophic bacterial carbon cycling and trophic influences in Florida Bay was used: (1) Spatiotemporal observations of environmental parameters (hydrology, nutrients, extracellular enzymes, and microbial abundance, biomass, and production); (2) Microbial grazing experiments under different levels of top-down and bottom-up influence; and (3) Bulk and compound-specific (bacteria-biomarker fatty acid analysis) stable carbon isotope analysis. ^ In Florida Bay, spatiotemporal patterns in microbial extracellular enzyme (also called ectoenzyme) activities indicate that microorganisms hydrolyzed selectively fractions of the estuarine organic matter pool. The microbial community hydrolyzed organic acids, peptides, and phosphate esters and did not use storage and structural carbohydrates. Organic matter use by heterotrophic bacterioplankton in Florida Bay was co-regulated by bottom-up (resource availability) and top-down (grazer mediated) processes. A bacterial carbon budget based on bacterial, epiphytic, and seagrass production indicates that heterotrophic bacterial carbon cycles are supported primarily through epiphytic production with mixing from seagrass production. Stable carbon isotope analysis of bacteria biomarkers and carbon sources in Florida Bay corroborate the results of the bacterial carbon budget. These results support previous studies of aquatic consumers in Florida Bay, indicating that epiphytic/benthic algal and/or cyanobacterial production with mixing from seagrass-derived organic matter is the carbon base of the seagrass estuarine food web. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Freshwater ecosystems have been recognized as important components of the global carbon cycle, and the flux of organic matter (OM) from freshwater to marine environments can significantly affect estuarine and coastal productivity. The focus of this study was the assessment of carbon dynamics in two aquatic environments, namely the Florida Everglades and small prairie streams in Kansas, with the aim of characterizing the biogeochemistry of OM. In the Everglades, particulate OM (POM) is mostly found as a layer of flocculent material (floc). While floc is believed to be the main energy source driving trophic dynamics in this oligotrophic wetland, not much is known about its biogeochemistry. The objective of this study was to determine the origin/sources of OM in floc using biomarkers and pigment-based chemotaxonomy to assess specific biomass contributions to this material, on a spatial (freshwater marshes vs. mangrove fringe) and seasonal (wet vs. dry) scales. It was found that floc OM is derived from the local vegetation (mainly algal components and macrophyte litter) and its composition is controlled by seasonal drivers of hydrology and local biomass productivity. Photo-reactivity experiments showed that light exposure on floc resulted in photo-dissolution of POC with the generation of significant amounts of both dissolved OM (DOM) and nutrients (N & P), potentially influencing nutrient dynamics in this ecosystem. The bio-reactivity experiments determined as the amount and rate of CO2 evolution during incubation were found to vary on seasonal and spatial scales and were highly influenced by phosphorus limitation. Not much is known on OM dynamics in small headwater streams. The objective of this study was to determine carbon dynamics in sediments from intermittent prairie streams, characterized by different vegetation cover for their watershed (C4 grasses) vs. riparian zone (C3 plants). In this study sedimentary OM was characterized using a biomarker and compound specific carbon stable isotope approach. It was found that the biomarker composition of these sediments is dominated by higher plant inputs from the riparian zone, although inputs from adjacent prairie grasses were also apparent. Conflicting to some extent with the River Continuum Concept, sediments of the upper reaches contained more degraded OM, while the lower reaches were enriched in fresh material deriving from higher plants and plankton sources as a result of hydrological regimes and particle sorting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We conducted a series of experiments whereby dissolved organic matter (DOM) was leached from various wetland and estuarine plants, namely sawgrass (Cladium jamaicense), spikerush (Eleocharis cellulosa), red mangrove (Rhizophora mangle), cattail (Typha domingensis), periphyton (dry and wet mat), and a seagrass (turtle grass; Thalassia testudinum). All are abundant in the Florida Coastal Everglades (FCE) except for cattail, but this species has a potential to proliferate in this environment. Senescent plant samples were immersed into ultrapure water with and without addition of 0.1% NaN3 (w/ and w/o NaN3, respectively) for 36 days. We replaced the water every 3 days. The amount of dissolved organic carbon (DOC), sugars, and phenols in the leachates were analyzed. The contribution of plant leachates to the ultrafiltered high molecular weight fraction of DOM (>1 kDa; UDOM) in natural waters in the FCE was also investigated. UDOM in plant leachates was obtained by tangential flow ultrafiltration and its carbon and phenolic compound compositions were analyzed using solid state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy and thermochemolysis in the presence of tetramethylammonium hydroxide (TMAH thermochemolysis), respectively. The maximum yield of DOC leached from plants over the 36-day incubations ranged from 13.0 to 55.2 g C kg−1 dry weight. This amount was lower in w/o NaN3 treatments (more DOC was consumed by microbes than produced) except for periphyton. During the first 2 weeks of the 5 week incubation period, 60–85% of the total amount of DOC was leached, and exponential decay models fit the leaching rates except for periphyton w/o NaN3. Leached DOC (w/ NaN3) contained different concentrations of sugars and phenols depending on the plant types (1.09–7.22 and 0.38–12.4 g C kg−1 dry weight, respectively), and those biomolecules comprised 8–34% and 4–28% of the total DOC, respectively. This result shows that polyphenols that readily leach from senescent plants can be an important source of chromophoric DOM (CDOM) in wetland environments. The O-alkyl C was found to be the major C form (55±9%) of UDOM in plant leachates as determined by 13C CPMAS NMR. The relative abundance of alkyl C and carbonyl C was consistently lower in plant-leached UDOM than that in natural water UDOM in the FCE, which suggests that these constituents increase in relative abundance during diagenetic processing. TMAH thermochemolysis analysis revealed that the phenolic composition was different among the UDOM leached from different plants, and was expected to serve as a source indicator of UDOM in natural water. Polyphenols are, however, very reactive and photosensitive in aquatic environments, and thus may loose their plant-specific molecular characteristics shortly. Our study suggests that variations in vegetative cover across a wetland landscape will affect the quantity and quality of DOM leached into the water, and such differences in DOM characteristics may affect other biogeochemical processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of organic matter (OM) sources in sediments and soils is a key to better understand the biogeochemical cycling of carbon in aquatic environments. While traditional molecular marker-based methods have provided such information for typical two end member (allochthonous/terrestrial vs. autochthonous/microbial)-dominated systems, more detailed, biomass-specific assessments are needed for ecosystems with complex OM inputs such as tropical and sub-tropical wetlands and estuaries where aquatic macrophytes and macroalgae may play an important role as OM sources. The aim of this study was to assess the utility of a combined approach using compound specific stable carbon isotope analysis and an n-alkane based proxy (Paq) to differentiate submerged and emergent/terrestrial vegetation OM inputs to soils/sediments from a sub-tropical wetland and estuarine system, the Florida Coastal Everglades. Results show that Paq values (0.13–0.51) for the emergent/terrestrial plants were generally lower than those for freshwater/marine submerged vegetation (0.45–1.00) and that compound specific δ13C values for the n-alkanes (C23 to C31) were distinctively different for terrestrial/emergent and freshwater/marine submerged plants. While crossplots of the Paq and n-alkane stable isotope values for the C23n-alkane suggest that OM inputs are controlled by vegetation changes along the freshwater to marine transect, further resolution regarding OM input changes along this landscape was obtained through principal component analysis (PCA), successfully grouping the study sites according to the OM source strengths. The data show the potential for this n-alkane based multi-proxy approach as a means of assessing OM inputs to complex ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The manner in which remains decompose has been and is currently being researched around the world, yet little is still known about the generated scent of death. In fact, it was not until the Casey Anthony trial that research on the odor released from decomposing remains, and the compounds that it is comprised of, was brought to light. The Anthony trial marked the first admission of human decomposition odor as forensic evidence into the court of law; however, it was not "ready for prime time" as the scientific research on the scent of death is still in its infancy. This research employed the use of solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) to identify the volatile organic compounds (VOCs) released from decomposing remains and to assess the impact that different environmental conditions had on the scent of death. Using human cadaver analogues, it was discovered that the environment in which the remains were exposed to dramatically affected the odors released by either modifying the compounds that it was comprised of or by enhancing/hindering the amount that was liberated. In addition, the VOCs released during the different stages of the decomposition process for both human remains and analogues were evaluated. Statistical analysis showed correlations between the stage of decay and the VOCs generated, such that each phase of decomposition was distinguishable based upon the type and abundance of compounds that comprised the odor. This study has provided new insight into the scent of death and the factors that can dramatically affect it, specifically, frozen, aquatic, and soil environments. Moreover, the results revealed that different stages of decomposition were distinguishable based upon the type and total mass of each compound present. Thus, based upon these findings, it is suggested that the training aids that are employed for human remains detection (HRD) canines should 1) be characteristic of remains that have undergone decomposition in different environmental settings, and 2) represent each stage of decay, to ensure that the HRD canines have been trained to the various odors that they are likely to encounter in an operational situation.