2 resultados para Numerical power performance

em Digital Commons at Florida International University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this research was to apply the concepts of power and influence tactics to the joint venture context by examining how they relate to venture performance. In addition, culture and the expectations of future cooperation were examined for their association with influence tactic use and joint venture performance. Data were collected from 58 parent firms of U.S.-based domestic and international joint ventures about their relationships with their partners.^ Under the theories of social exchange and power dependence, a parent's level of power is based on its partner's dependence on the relationship. The statistical results indicated that: (1) the greater the total of power of both parents in an equal power relationship, the greater the joint venture's performance; and (2) the greater the inequality between each parent's level of power, the lower the joint venture's performance. It was also found that the way in which a parent firm tried to influence its partner was related to joint venture performance. Specifically, the use of references to a partner's legitimate authority was negatively related to performance, while the use of rational arguments and compromises was positively related.^ Contrary to expectations, the cultural backgrounds of the parents were not shown to have a relationship to influence tactic use or joint venture's performance. On the other hand, greater expectation of future cooperation had a positive association with performance, and a significant relationship with influence tactic use. The greater the expectation, the less partners used more confrontational tactics such as pressure or legitimate authority. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Compact thermal-fluid systems are found in many industries from aerospace to microelectronics where a combination of small size, light weight, and high surface area to volume ratio fluid networks are necessary. These devices are typically designed with fluid networks consisting of many small parallel channels that effectively pack a large amount of heat transfer surface area in a very small volume but do so at the cost of increased pumping power requirements. ^ To offset this cost the use of a branching fluid network for the distribution of coolant within a heat sink is investigated. The goal of the branch design technique is to minimize the entropy generation associated with the combination of viscous dissipation and convection heat transfer experienced by the coolant in the heat sink while maintaining compact high heat transfer surface area to volume ratios. ^ The derivation of Murray's Law, originally developed to predict the geometry of physiological transport systems, is extended to heat sink designs which minimze entropy generation. Two heat sink designs at different scales are built, and tested experimentally and analytically. The first uses this new derivation of Murray's Law. The second uses a combination of Murray's Law and Constructal Theory. The results of the experiments were used to verify the analytical and numerical models. These models were then used to compare the performance of the heat sink with other compact high performance heat sink designs. The results showed that the techniques used to design branching fluid networks significantly improves the performance of active heat sinks. The design experience gained was then used to develop a set of geometric relations which optimize the heat transfer to pumping power ratio of a single cooling channel element. Each element can be connected together using a set of derived geometric guidelines which govern branch diameters and angles. The methodology can be used to design branching fluid networks which can fit any geometry. ^