3 resultados para Numerical analyses
em Digital Commons at Florida International University
Resumo:
Groundwater systems of different densities are often mathematically modeled to understand and predict environmental behavior such as seawater intrusion or submarine groundwater discharge. Additional data collection may be justified if it will cost-effectively aid in reducing the uncertainty of a model's prediction. The collection of salinity, as well as, temperature data could aid in reducing predictive uncertainty in a variable-density model. However, before numerical models can be created, rigorous testing of the modeling code needs to be completed. This research documents the benchmark testing of a new modeling code, SEAWAT Version 4. The benchmark problems include various combinations of density-dependent flow resulting from variations in concentration and temperature. The verified code, SEAWAT, was then applied to two different hydrological analyses to explore the capacity of a variable-density model to guide data collection. ^ The first analysis tested a linear method to guide data collection by quantifying the contribution of different data types and locations toward reducing predictive uncertainty in a nonlinear variable-density flow and transport model. The relative contributions of temperature and concentration measurements, at different locations within a simulated carbonate platform, for predicting movement of the saltwater interface were assessed. Results from the method showed that concentration data had greater worth than temperature data in reducing predictive uncertainty in this case. Results also indicated that a linear method could be used to quantify data worth in a nonlinear model. ^ The second hydrological analysis utilized a model to identify the transient response of the salinity, temperature, age, and amount of submarine groundwater discharge to changes in tidal ocean stage, seasonal temperature variations, and different types of geology. The model was compared to multiple kinds of data to (1) calibrate and verify the model, and (2) explore the potential for the model to be used to guide the collection of data using techniques such as electromagnetic resistivity, thermal imagery, and seepage meters. Results indicated that the model can be used to give insight to submarine groundwater discharge and be used to guide data collection. ^
Resumo:
Eyewall replacement cycle (ERC) is frequently observed during the evolution of intensifying Tropical Cyclones (TCs). Although intensely studied in recent years, the underlying mechanisms of ERC are still poorly understood, and the forecast of ERC remains a great challenge. To advance our understanding of ERC and provide insights in improvement of numerical forecast of ERC, a series of numerical simulations is performed to investigate ERCs in TC-like vortices on a f-plane. The simulated ERCs possess key features similar to those observed in real TCs including the formation of a secondary tangential wind maximum associated with the outer eyewall. The Sawyer-Eliassen equation and tangential momentum budget analyses are performed to diagnose the mechanisms underlying the secondary eyewall formation (SEF) and ERC. Our diagnoses reveal crucial roles of outer rainband heating in governing the formation and development of the secondary tangential wind maximum and demonstrate that the outer rainband convection must reach a critical strength relative to the eyewall before SEF and the subsequent ERC can occur. A positive feedback among low-level convection, acceleration of tangential winds in the boundary layer, and surface evaporation that leads to the development of ERC and a mechanism for the demise of inner eyewall that involves interaction between the transverse circulations induced by eyewall and outer rainband convection are proposed. The tangential momentum budget indicates that the net tendency of tangential wind is a small residual resultant from a large cancellation between tendencies induced by the resolved and sub-grid scale (SGS) processes. The large SGS contribution to the tangential wind budget explains different characteristics of ERC shown in previous numerical studies and poses a great challenge for a timely correct forecast of ERC. The sensitivity experiments show that ERCs are strongly subjected to model physics, vortex radial structure and background wind. The impact of model physics on ERC can be well understood with the interaction among eyewall/outer rainband heating, radilal inflow in the boundary layer, surface layer turbulent processes, and shallow convection in the moat. However, further investigations are needed to fully understand the exhibited sensitivities of ERC to vortex radial structure and background wind.
Resumo:
Eyewall replacement cycle (ERC) is frequently observed during the evolution of intensifying Tropical Cyclones (TCs). Although intensely studied in recent years, the underlying mechanisms of ERC are still poorly understood, and the forecast of ERC remains a great challenge. To advance our understanding of ERC and provide insights in improvement of numerical forecast of ERC, a series of numerical simulations is performed to investigate ERCs in TC-like vortices on a f-plane. The simulated ERCs possess key features similar to those observed in real TCs including the formation of a secondary tangential wind maximum associated with the outer eyewall. The Sawyer-Eliassen equation and tangential momentum budget analyses are performed to diagnose the mechanisms underlying the secondary eyewall formation (SEF) and ERC. Our diagnoses reveal crucial roles of outer rainband heating in governing the formation and development of the secondary tangential wind maximum and demonstrate that the outer rainband convection must reach a critical strength relative to the eyewall before SEF and the subsequent ERC can occur. A positive feedback among low-level convection, acceleration of tangential winds in the boundary layer, and surface evaporation that leads to the development of ERC and a mechanism for the demise of inner eyewall that involves interaction between the transverse circulations induced by eyewall and outer rainband convection are proposed. The tangential momentum budget indicates that the net tendency of tangential wind is a small residual resultant from a large cancellation between tendencies induced by the resolved and sub-grid scale (SGS) processes. The large SGS contribution to the tangential wind budget explains different characteristics of ERC shown in previous numerical studies and poses a great challenge for a timely correct forecast of ERC. The sensitivity experiments show that ERCs are strongly subjected to model physics, vortex radial structure and background wind. The impact of model physics on ERC can be well understood with the interaction among eyewall/outer rainband heating, radilal inflow in the boundary layer, surface layer turbulent processes, and shallow convection in the moat. However, further investigations are needed to fully understand the exhibited sensitivities of ERC to vortex radial structure and background wind.