9 resultados para Numerical Evaluation of Special Functions
em Digital Commons at Florida International University
Resumo:
Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD's unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD's easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.
Resumo:
Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD’s unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD’s easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.
Resumo:
Hurricane is one of the most destructive and costly natural hazard to the built environment and its impact on low-rise buildings, particularity, is beyond acceptable. The major objective of this research was to perform a parametric evaluation of internal pressure (IP) for wind-resistant design of low-rise buildings and wind-driven natural ventilation applications. For this purpose, a multi-scale experimental, i.e. full-scale at Wall of Wind (WoW) and small-scale at Boundary Layer Wind Tunnel (BLWT), and a Computational Fluid Dynamics (CFD) approach was adopted. This provided new capability to assess wind pressures realistically on internal volumes ranging from small spaces formed between roof tiles and its deck to attic to room partitions. Effects of sudden breaching, existing dominant openings on building envelopes as well as compartmentalization of building interior on the IP were systematically investigated. Results of this research indicated: (i) for sudden breaching of dominant openings, the transient overshooting response was lower than the subsequent steady state peak IP and internal volume correction for low-wind-speed testing facilities was necessary. For example a building without volume correction experienced a response four times faster and exhibited 30–40% lower mean and peak IP; (ii) for existing openings, vent openings uniformly distributed along the roof alleviated, whereas one sided openings aggravated the IP; (iii) larger dominant openings exhibited a higher IP on the building envelope, and an off-center opening on the wall exhibited (30–40%) higher IP than center located openings; (iv) compartmentalization amplified the intensity of IP and; (v) significant underneath pressure was measured for field tiles, warranting its consideration during net pressure evaluations. The study aimed at wind driven natural ventilation indicated: (i) the IP due to cross ventilation was 1.5 to 2.5 times higher for Ainlet/Aoutlet>1 compared to cases where Ainlet/Aoutlet<1, this in effect reduced the mixing of air inside the building and hence the ventilation effectiveness; (ii) the presence of multi-room partitioning increased the pressure differential and consequently the air exchange rate. Overall good agreement was found between the observed large-scale, small-scale and CFD based IP responses. Comparisons with ASCE 7-10 consistently demonstrated that the code underestimated peak positive and suction IP.
Resumo:
During the past few years there has been a drastic shortage of registered nurses in the field. The shortage appears to have affected the field of psychiatric mental health nursing most intensely. The psychiatric nursing shortage is a multifaceted problem grounded in decreasing federal funds for advanced clinical training, inadequate undergraduate psychiatric experiences, lack of a well prepared articulate role model, the integrated curriculum and the confusion and blurring associated with the roles and functions of the psychiatric mental health nurse.^ This dissertation will describe the current nursing shortage; the decline in enrollment to nursing programs; the history of psychiatric nursing as a discipline; the shortage of psychiatric mental health nurses; factors contributing to the psychiatric nursing shortage and a plan for a solution to the nursing shortage in psychiatry.^ The paper focuses on an evaluation conducted on an internship curriculum designed to facilitate effective nursing care in the treatment of clients who exhibit emotional problems. The purpose of this study was to attract and retain nurses to employment opportunities in four Hospital Corporation of America (HCA) facilities, using a six week internship program.^ The study will yield an analysis of the effect of combining psychodynamic principles and knowledge with skills in the clinical area. The demands of educational practice have been merged with the discipline of psychiatric nursing in the development of this curriculum. ^
Resumo:
The purpose of this study was to assess the knowledge of public school administrators with respect to special education (ESE) law. The study used a sample of 220 public school administrators. A survey instrument was developed consisting of 19 demographic questions and 20 situational scenarios. The scenarios were based on ESE issues of discipline, due process (including IEP procedures), identification, evaluation, placement, and related services. The participants had to decide whether a violation of the ESE child's rights had occurred by marking: (a) Yes, (b) No, or (c) Undecided. An analysis of the scores and demographic information was done using a two-way analysis of variance, chi-square, and crosstabs after a 77% survey response rate.^ Research questions addressed the administrators' overall level of knowledge. Comparisons were made between principals and assistant principals and differences between the levels of schooling. Exploratory questions were concerned with ESE issues deemed problematic by administrators, effects of demographic variables on survey scores, and the listing of resources utilized by administrators to access ESE information.^ The study revealed: (a) a significant difference was found when comparing the number of ESE courses taken and the score on the survey, (b) the top five resources of ESE information were the region office, school ESE department chairs, ESE teachers, county workshops, and county inservices, (c) problematic areas included discipline, evaluation procedures, placement issues, and IEP due process concerns, (d) administrators as a group did not exhibit a satisfactory knowledge of ESE law with a mean score of 12 correct and 74% of responding administrators scoring in the unsatisfactory level (below 70%), (e) across school levels, elementary administrators scored significantly higher than high school administrators, and (f) a significant implication that assistant principals consistently scored higher than principals on each scenario with a significant difference at the high school level.^ The study reveals a vital need for administrators to receive additional preparation in order to possess a basic understanding of ESE school law and how it impacts their respective schools and school districts so that they might meet professional obligations and protect the rights of all individuals involved. Recommendations for this additional administrative preparation and further research topics were discussed. ^
Resumo:
Subduction zone magmatism is an important and extensively studied topic in igneous geochemistry. Recent studies focus on from where arc magmas are generated, how subduction components (fluids or melts) are fluxed into the source of the magmas, and whether or how the subduction components affect partial melting processes beneath volcanic arcs at convergent boundaries. ^ At 39.5°S in the Central Southern Volcanic Zone of the Andes, Volcano Villarrica is surrounded by a suite of Small Eruptive Centers (SEC). The SECs are located mostly to the east and northeast of the stratovolcano and aligned along the Liquine-Ofqui Fault Zone, the major fracture system in this area. Former studies observed the geochemical patterns of the SECs differ distinctively from those of V. Villarrica and suggested there may be a relationship between the compositions of the volcanic units and their edifice sizes. This work is a comprehensive geochemical study on the SECs near V. Villarrica, using a variety of geochemical tracers and tools including major, trace and REE elements, Li-Be-B elements, Sr-Nd-Pb isotopes and short-lived isotopes such as U-series and 10Be. In this work, systematic differences between the elemental and isotopic compositions of the SECs and those of V. Villarrica are revealed and more importantly, modeled in terms of magmatic processes occurring at continental arc margins. Detailed modeling calculations in this work reconstruct chemical compositions of the primary magmas, source compositions, compositions and percentages of different subduction endmembers mixed into the source, degrees of partial melting and different time scales of the SECs and V. Villarrica, respectively. Geochemical characteristics and possible origins of the two special SECs—andesitic Llizan, with crustal signatures, and Rucapillan, to the northwest toward the trench, are also discussed in this work. ^
Resumo:
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system's EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter's components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled
Resumo:
Many U.S. students do not perform well on mathematics assessments with respect to algebra topics such as linear functions, a building-block for other functions. Poor achievement of U.S. middle school students in this topic is a problem. U.S. eighth graders have had average mathematics scores on international comparison tests such as Third International Mathematics Science Study, later known as Trends in Mathematics and Science Study, (TIMSS)-1995, -99, -03, while Singapore students have had highest average scores. U.S. eighth grade average mathematics scores improved on TIMMS-2007 and held steady onTIMMS-2011. Results from national assessments, PISA 2009 and 2012 and National Assessment of Educational Progress of 2007, 2009, and 2013, showed a lack of proficiency in algebra. Results of curriculum studies involving nations in TIMSS suggest that elementary textbooks in high-scoring countries were different than elementary textbooks and middle grades texts were different with respect to general features in the U.S. The purpose of this study was to compare treatments of linear functions in Singapore and U.S. middle grades mathematics textbooks. Results revealed features currently in textbooks. Findings should be valuable to constituencies who wish to improve U.S. mathematics achievement. Portions of eight Singapore and nine U.S. middle school student texts pertaining to linear functions were compared with respect to 22 features in three categories: (a) background features, (b) general features of problems, and (c) specific characterizations of problem practices, problem-solving competency types, and transfer of representation. Features were coded using a codebook developed by the researcher. Tallies and percentages were reported. Welch's t-tests and chi-square tests were used, respectively, to determine whether texts differed significantly for the features and if codes were independent of country. U.S. and Singapore textbooks differed in page appearance and number of pages, problems, and images. Texts were similar in problem appearance. Differences in problems related to assessment of conceptual learning. U.S. texts contained more problems requiring (a) use of definitions, (b) single computation, (c) interpreting, and (d) multiple responses. These differences may stem from cultural differences seen in attitudes toward education. Future studies should focus on density of page, spiral approach, and multiple response problems.
Resumo:
The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled