4 resultados para Nuclear arms control.

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein coding genes are comprised of protein-coding exons and non-protein-coding introns. The process of splicing involves removal of the introns and joining of the exons to form a mature messenger RNA, which subsequently undergoes translation into polypeptide. The spliceosome is a large, RNA/protein assembly of five small nuclear RNAs as well as over 300 proteins, which catalyzes intron removal and exon ligation. The selection of specific exons for inclusion in the mature messenger RNA is spatiotemporally regulated and results in production of an enormous diversity of polypeptides from a single gene locus. This phenomenon, known as alternative splicing, is regulated, in part, by protein splicing factors, which target the spliceosome to exon/intron boundaries. The first part of my dissertation (Chapters II and III) focuses on the discovery and characterization of the 45 kilodalton FK506 binding protein (FKBP45), which I discovered in the silk moth, Bombyx mori, as a U1 small nuclear RNA binding protein. This protein family binds the immunosuppressants FK506 and rapamycin and contains peptidyl-prolyl cis-trans isomerase activity, which converts polypeptides from cis to trans about a proline residue. This is the first time that an FKBP has been identified in the spliceosome. The second section of my dissertation (Chapters IV, V, VI and VII) is an investigation of the potential role of small nuclear RNA sequence variants in the control of splicing. I identified 46 copies of small nuclear RNAs in the 6X whole genome shotgun of the Bombyx mori p50T strain. These variants may play a role in differential binding of specific proteins that mediate alternative splicing. Along these lines, further investigation of U2 snRNA sequence variants in Bombyx mori demonstrated that some U2 snRNAs preferentially assemble into high molecular weight spliceosomal complexes over others. Expression of snRNA variants may represent another mechanism by which the cell is able to fine tune the splicing process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research presented in this dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. These processes are characterized by the production of particles with large energies and transverse momenta. Through these processes, this work explored both, the constituent (quark) structure of baryons (specifically nucleons and Δ-Isobars), and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. The first of such reactions is the hard nucleon-nucleon elastic scattering, which was studied here considering the quark exchange between the nucleons to be the dominant mechanism of interaction in the constituent picture. In particular, it was found that an angular asymmetry exhibited by proton-neutron elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon’s structure instead of a more traditional SU(6) three quarks picture. The latter yields an asymmetry around 90o center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and proton-neutron (pn) breakup in 3He, and ΔΔ-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the quark interchange mechanism provides a Quantum Chromodynamics (QCD) description of the reaction. Through the HRM, cross sections for both channels in 3He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In ΔΔ-isobars production in deuteron breakup, HRM angular distributions for the two ΔΔ channels were compared to the pn channel and to each other. An important prediction fromthis study is that the Δ++Δ- channel consistently dominates Δ+Δ0, which is in contrast with models that unlike the HRM consider a ΔΔ system in the initial state of the interaction. For such models both channels should have the same strength. These results are important in developing a QCD description of the atomic nucleus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2009, South American military spending reached a total of $51.8 billion, a fifty percent increased from 2000 expenditures. The five-year moving average of arms transfers to South America was 150 percent higher from 2005 to 2009 than figures for 2000 to 2004.[1] These figures and others have led some observers to conclude that Latin America is engaged in an arms race. Other reasons, however, account for Latin America’s large military expenditure. Among them: Several countries have undertaken long-prolonged modernization efforts, recently made possible by six years of consistent regional growth.[2] A generational shift is at hand. Armed Forces are beginning to shed the stigma and association with past dictatorial regimes.[3] Countries are pursuing specific individual strategies, rather than reacting to purchases made by neighbors. For example, Brazil wants to attain greater control of its Amazon rainforests and offshore territories, Colombia’s spending demonstrates a response to internal threats, and Chile is continuing a modernization process begun in the 1990s.[4] Concerns remain, however: Venezuela continues to demonstrate poor democratic governance and a lack of transparency; neighbor-state relations between Colombia and Venezuela, Peru and Chile, and Bolivia and Paraguay, must all continue to be monitored; and Brazil’s military purchases, although legitimate, will likely result in a large accumulation of equipment.[5] These concerns can be best addressed by strengthening and garnering greater participation in transparent procurement mechanism.[6] The United States can do its part by supporting Latin American efforts to embrace the transparency process. _________________ [1] Bromley, Mark, “An Arms Race in Our Hemisphere? Discussing the Trends and Implications of Military Expenditures in South America,” Brookings Institution Conference, Washington, D.C., June 3rd, 2010, Transcript Pgs. 12,13, and 16 [2] Robledo, Marcos, “The Rearmament Debate: A Chilean Perspective,” Power Point presentation, slide 18, 2010 Western Hemisphere Security Colloquium, Miami, Florida, May 25th-26th, 2010 [3] Yopo, Boris, “¿Carrera Armamentista en la Regiόn?” La Tercera, November 2nd, 2009, http://www.latercera.com/contenido/895_197084_9.shtml, accessed October 8th, 2010 [4] Walser, Ray, “An Arms Race in Our Hemisphere? Discussing the Trends and Implications of Military Expenditures in South America,” Brookings Institution Conference, Washington, D.C., June 3rd, 2010, Transcript Pgs. 49,50,53 and 54 [5] Ibid., Guevara, Iñigo, Pg. 22 [6] Ibid., Bromley, Mark, Pgs. 18 and 19

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein coding genes are comprised of protein-coding exons and non-protein-coding introns. The process of splicing involves removal of the introns and joining of the exons to form a mature messenger RNA, which subsequently undergoes translation into polypeptide. The spliceosome is a large, RNA/protein assembly of five small nuclear RNAs as well as over 300 proteins, which catalyzes intron removal and exon ligation. The selection of specific exons for inclusion in the mature messenger RNA is spatio-temporally regulated and results in production of an enormous diversity of polypeptides from a single gene locus. This phenomenon, known as alternative splicing, is regulated, in part, by protein splicing factors, which target the spliceosome to exon/intron boundaries. The first part of my dissertation (Chapters II and III) focuses on the discovery and characterization of the 45 kilodalton FK506 binding protein (FKBP45), which I discovered in the silk moth, Bombyx mori, as a U1 small nuclear RNA binding protein. This protein family binds the immunosuppressants FK506 and rapamycin and contains peptidyl-prolyl cis-trans isomerase activity, which converts polypeptides from cis to trans about a proline residue. This is the first time that an FKBP has been identified in the spliceosome. The second section of my dissertation (Chapters IV, V, VI and VII) is an investigation of the potential role of small nuclear RNA sequence variants in the control of splicing. I identified 46 copies of small nuclear RNAs in the 6X whole genome shotgun of the Bombyx mori p50T strain. These variants may play a role in differential binding of specific proteins that mediate alternative splicing. Along these lines, further investigation of U2 snRNA sequence variants in Bombyx mori demonstrated that some U2 snRNAs preferentially assemble into high molecular weight spliceosomal complexes over others. Expression of snRNA variants may represent another mechanism by which the cell is able to fine tune the splicing process.