3 resultados para Not in our genes
em Digital Commons at Florida International University
Resumo:
Key to predicting impacts of predation is understanding the mechanisms through which predators impact prey populations. While consumptive effects are well-known, non-consumptive predator effects (risk effects) are increasingly being recognized as important. Studies of risk effects, however, have focused largely on how trade-offs between food and safety affect fitness. Less documented, and appreciated, is the potential for predator presence to directly suppress prey reproduction and affect life-history characteristics. For the first time, we tested the effects of visual predator cues on reproduction of two prey species with different reproductive modes, lecithotrophy (i.e. embryonic development primarily fueled by yolk) and matrotrophy (i.e. energy for embryonic development directly supplied by the mother to the embryo through a vascular connection). Predation risk suppressed reproduction in the lecithotrophic prey (Gambusia holbrokii) but not the matrotroph (Heterandria formosa). Predator stress caused G. holbrooki to reduce clutch size by 43%, and to produce larger and heavier offspring compared to control females. H. formosa, however, did not show any such difference. In G. holbrooki we also found a significantly high percentage (14%) of stillbirths in predator-exposed treatments compared to controls (2%). To the best of our knowledge, this is the first direct empirical evidence of predation stress affecting stillbirths in prey. Our results suggest that matrotrophy, superfetation (clutch overlap), or both decrease the sensitivity of mothers to environmental fluctuation in resource (food) and stress (predation risk) levels compared to lecithotrophy. These mechanisms should be considered both when modeling consequences of perceived risk of predation on prey-predator population dynamics and when seeking to understand the evolution of reproductive modes.
Resumo:
The service-producing industries have experienced problems in quality in the 1980s because of intense competition. The author discusses how these problems have been compounded in the fast food industry and how quality control can lead to success.
Resumo:
Background: During alternative splicing, the inclusion of an exon in the final mRNA molecule is determined by nuclear proteins that bind cis-regulatory sequences in a target pre-mRNA molecule. A recent study suggested that the regulatory codes of individual RNA-binding proteins may be nearly immutable between very diverse species such as mammals and insects. The model system Drosophila melanogaster therefore presents an excellent opportunity for the study of alternative splicing due to the availability of quality EST annotations in FlyBase. Methods: In this paper, we describe an in silico analysis pipeline to extract putative exonic splicing regulatory sequences from a multiple alignment of 15 species of insects. Our method, ESTs-to-ESRs (E2E), uses graph analysis of EST splicing graphs to identify mutually exclusive (ME) exons and combines phylogenetic measures, a sliding window approach along the multiple alignment and the Welch’s t statistic to extract conserved ESR motifs. Results: The most frequent 100% conserved word of length 5 bp in different insect exons was “ATGGA”. We identified 799 statistically significant “spike” hexamers, 218 motifs with either a left or right FDR corrected spike magnitude p-value < 0.05 and 83 with both left and right uncorrected p < 0.01. 11 genes were identified with highly significant motifs in one ME exon but not in the other, suggesting regulation of ME exon splicing through these highly conserved hexamers. The majority of these genes have been shown to have regulated spatiotemporal expression. 10 elements were found to match three mammalian splicing regulator databases. A putative ESR motif, GATGCAG, was identified in the ME-13b but not in the ME-13a of Drosophila N-Cadherin, a gene that has been shown to have a distinct spatiotemporal expression pattern of spliced isoforms in a recent study. Conclusions: Analysis of phylogenetic relationships and variability of sequence conservation as implemented in the E2E spikes method may lead to improved identification of ESRs. We found that approximately half of the putative ESRs in common between insects and mammals have a high statistical support (p < 0.01). Several Drosophila genes with spatiotemporal expression patterns were identified to contain putative ESRs located in one exon of the ME exon pairs but not in the other.