2 resultados para Non-stationary

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More information is now readily available to computer users than at any time in human history; however, much of this information is often inaccessible to people with blindness or low-vision, for whom information must be presented non-visually. Currently, screen readers are able to verbalize on-screen text using text-to-speech (TTS) synthesis; however, much of this vocalization is inadequate for browsing the Internet. An auditory interface that incorporates auditory-spatial orientation was created and tested. For information that can be structured as a two-dimensional table, links can be semantically grouped as cells in a row within an auditory table, which provides a consistent structure for auditory navigation. An auditory display prototype was tested.^ Sixteen legally blind subjects participated in this research study. Results demonstrated that stereo panning was an effective technique for audio-spatially orienting non-visual navigation in a five-row, six-column HTML table as compared to a centered, stationary synthesized voice. These results were based on measuring the time- to-target (TTT), or the amount of time elapsed from the first prompting to the selection of each tabular link. Preliminary analysis of the TTT values recorded during the experiment showed that the populations did not conform to the ANOVA requirements of normality and equality of variances. Therefore, the data were transformed using the natural logarithm. The repeated-measures two-factor ANOVA results show that the logarithmically-transformed TTTs were significantly affected by the tonal variation method, F(1,15) = 6.194, p= 0.025. Similarly, the results show that the logarithmically transformed TTTs were marginally affected by the stereo spatialization method, F(1,15) = 4.240, p=0.057. The results show that the logarithmically transformed TTTs were not significantly affected by the interaction of both methods, F(1,15) = 1.381, p=0.258. These results suggest that some confusion may be caused in the subject when employing both of these methods simultaneously. The significant effect of tonal variation indicates that the effect is actually increasing the average TTT. In other words, the presence of preceding tones increases task completion time on average. The marginally-significant effect of stereo spatialization decreases the average log(TTT) from 2.405 to 2.264.^