7 resultados para Non-contact corneal aesthesiometry

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Establishing an association between the scent a perpetrator left at a crime scene to the odor of the suspect of that crime is the basis for the use of human scent identification evidence in a court of law. Law enforcement agencies gather evidence through the collection of scent from the objects that a perpetrator may have handled during the execution of the criminal act. The collected scent evidence is consequently presented to the canines for identification line-up procedures with the apprehended suspects. Presently, canine scent identification is admitted as expert witness testimony, however, the accurate behavior of the dogs and the scent collection methods used are often challenged by the court system. The primary focus of this research project entailed an evaluation of contact and non-contact scent collection techniques with an emphasis on the optimization of collection materials of different fiber chemistries to evaluate the chemical odor profiles obtained using varying environment conditions to provide a better scientific understanding of human scent as a discriminative tool in the identification of suspects. The collection of hand odor from female and male subjects through both contact and non-contact sampling approaches yielded new insights into the types of VOCs collected when different materials are utilized, which had never been instrumentally performed. Furthermore, the collected scent mass was shown to be obtained in the highest amounts for both gender hand odor samples on cotton sorbent materials. Compared to non-contact sampling, the contact sampling methods yielded a higher number of volatiles, an enhancement of up to 3 times, as well as a higher scent mass than non-contact methods by more than an order of magnitude. The evaluation of the STU-100 as a non-contact methodology highlighted strong instrumental drawbacks that need to be targeted for enhanced scientific validation of current field practices. These results demonstrated that an individual's human scent components vary considerably depending on the method used to collect scent from the same body region. This study demonstrated the importance of collection medium selection as well as the collection method employed in providing a reproducible human scent sample that can be used to differentiate individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human scent and human remains detection canines are used to locate living or deceased humans under many circumstances. Human scent canines locate individual humans on the basis of their unique scent profile, while human remains detection canines locate the general scent of decomposing human remains. Scent evidence is often collected by law enforcement agencies using a Scent Transfer Unit, a dynamic headspace concentration device. The goals of this research were to evaluate the STU-100 for the collection of human scent samples, and to apply this method to the collection of living and deceased human samples, and to the creation of canine training aids. The airflow rate and collection material used with the STU-100 were evaluated using a novel scent delivery method. Controlled Odor Mimic Permeation Systems were created containing representative standard compounds delivered at known rates, improving the reproducibility of optimization experiments. Flow rates and collection materials were compared. Higher air flow rates usually yielded significantly less total volatile compounds due to compound breakthrough through the collection material. Collection from polymer and cellulose-based materials demonstrated that the molecular backbone of the material is a factor in the trapping and releasing of compounds. The weave of the material also affects compound collection, as those materials with a tighter weave demonstrated enhanced collection efficiencies. Using the optimized method, volatiles were efficiently collected from living and deceased humans. Replicates of the living human samples showed good reproducibility; however, the odor profiles from individuals were not always distinguishable from one another. Analysis of the human remains samples revealed similarity in the type and ratio of compounds. Two types of prototype training aids were developed utilizing combinations of pure compounds as well as volatiles from actual human samples concentrated onto sorbents, which were subsequently used in field tests. The pseudo scent aids had moderate success in field tests, and the Odor pad aids had significant success. This research demonstrates that the STU-100 is a valuable tool for dog handlers and as a field instrument; however, modifications are warranted in order to improve its performance as a method for instrumental detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a unique athletic injury witnessed by the primary investigator who was compelled to convey the details of the incident to other Certified Athletic Trainers. This case is presented to increase awareness and ensure proper recognition, evaluation, and treatment of this potentially life-threatening injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing need for fast sampling of explosives in high throughput areas has increased the demand for improved technology for the trace detection of illicit compounds. Detection of the volatiles associated with the presence of the illicit compounds offer a different approach for sensitive trace detection of these compounds without increasing the false positive alarm rate. This study evaluated the performance of non-contact sampling and detection systems using statistical analysis through the construction of Receiver Operating Characteristic (ROC) curves in real-world scenarios for the detection of volatiles in the headspace of smokeless powder, used as the model system for generalizing explosives detection. A novel sorbent coated disk coined planar solid phase microextraction (PSPME) was previously used for rapid, non-contact sampling of the headspace containers. The limits of detection for the PSPME coupled to IMS detection was determined to be 0.5-24 ng for vapor sampling of volatile chemical compounds associated with illicit compounds and demonstrated an extraction efficiency of three times greater than other commercially available substrates, retaining >50% of the analyte after 30 minutes sampling of an analyte spike in comparison to a non-detect for the unmodified filters. Both static and dynamic PSPME sampling was used coupled with two ion mobility spectrometer (IMS) detection systems in which 10-500 mg quantities of smokeless powders were detected within 5-10 minutes of static sampling and 1 minute of dynamic sampling time in 1-45 L closed systems, resulting in faster sampling and analysis times in comparison to conventional solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis. Similar real-world scenarios were sampled in low and high clutter environments with zero false positive rates. Excellent PSPME-IMS detection of the volatile analytes were visualized from the ROC curves, resulting with areas under the curves (AUC) of 0.85-1.0 and 0.81-1.0 for portable and bench-top IMS systems, respectively. Construction of ROC curves were also developed for SPME-GC-MS resulting with AUC of 0.95-1.0, comparable with PSPME-IMS detection. The PSPME-IMS technique provides less false positive results for non-contact vapor sampling, cutting the cost and providing an effective sampling and detection needed in high-throughput scenarios, resulting in similar performance in comparison to well-established techniques with the added advantage of fast detection in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the American Podiatric Medical Association, about 15 percent of the patients with diabetes would develop a diabetic foot ulcer. Furthermore, foot ulcerations leads to 85 percent of the diabetes-related amputations. Foot ulcers are caused due to a combination of factors, such as lack of feeling in the foot, poor circulation, foot deformities and the duration of the diabetes. To date, the wounds are inspected visually to monitor the wound healing, without any objective imaging approach to look before the wound’s surface. Herein, a non-contact, portable handheld optical device was developed at the Optical Imaging Laboratory as an objective approach to monitor wound healing in foot ulcer. This near-infrared optical technology is non-radiative, safe and fast in imaging large wounds on patients. The FIU IRB-approved study will involve subjects that have been diagnosed with diabetes by a physician and who have developed foot ulcers. Currently, in-vivo imaging studies are carried out every week on diabetic patients with foot ulcers at two clinical sites in Miami. Near-infrared images of the wound are captured on subjects every week and the data is processed using customdeveloped Matlab-based image processing tools. The optical contrast of the wound to its peripheries and the wound size are analyzed and compared from the NIR and white light images during the weekly systematic imaging of wound healing.