6 resultados para Nitrogen analysis
em Digital Commons at Florida International University
Resumo:
This dissertation research project addressed the question of how hydrologic restoration of the Everglades is impacting the nutrient dynamics of marsh ecosystems in the southern Everglades. These effects were analyzed by quantifying nitrogen (N) cycle dynamics in the region. I utilized stable isotope tracer techniques to investigate nitrogen uptake and cycling between the major ecosystem components of the freshwater marsh system. I recorded the natural isotopic signatures (δ15N and δ 13C) for major ecosystem components from the three major watersheds of the Everglades: Shark River Slough, Taylor Slough, and C-111 basin. Analysis of δ15 N and δ13C natural abundance data were used to demonstrate the spatial extent to which nitrogen from anthropogenic or naturally enriched sources is entering the marshes of the Everglades. In addition, I measured the fluxes on N between various ecosystem components at both near-canal and estuarine ecotone locations. Lastly, I investigated the effect of three phosphorus load treatments (0.00 mg P m-2, 6.66 mg P m-2, and 66.6 mg P m-2) on the rate and magnitude of ecosystem N-uptake and N-cycling. The δ15N and δ13C natural abundance data supported the hypothesis that ecosystem components from near-canal sites have heavier, more enriched δ 15N isotopic signatures than downstream sites. The natural abundance data also showed that the marshes of the southern Everglades are acting as a sink for isotopically heavier, canal-borne dissolved inorganic nitrogen (DIN) and a source for "new" marsh derived dissolved organic nitrogen (DON). In addition, the 15N mesocosm data showed the rapid assimilation of the 15N tracer by the periphyton component and the delayed N uptake by soil and macrophyte components in the southern Everglades.
Resumo:
Long term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on coastal biogeochemistry. The present study sought to increase understanding of the coastal marine system of South Florida under modern conditions and through the anthropogenic changes in the last century, on scales ranging from individual nutrient cycle processes to seasonal patterns in organic material (OM) under varying hydrodynamic regime, to century scale analysis of sedimentary records. In all applications, carbon and nitrogen stable isotopic compositions of OM were examined as natural recorders of change and nutrient cycling in the coastal system. ^ High spatial and temporal variability in stable isotopic compositions were observed on all time scales. During a transient phytoplankton bloom, δ 15N values suggested nitrogen fixation as a nutrient source supporting enhanced productivity. Seasonally, particulate organic material (POM) from ten sites along the Florida Reef Tract and in Florida Bay demonstrated variable fluctuations dependent on hydrodynamic setting. Three separate intra-annual patterns were observed, yet statistical differences were observed between groupings of Florida Bay and Atlantic Ocean sites. The POM δ 15N values ranged on a quarterly basis by 7‰, while δ 13C varied by 22‰. From a sediment history perspective, four cores collected from Florida Bay further demonstrated the spatial and temporal variability of the system in isotopic composition of bulk OM over time. Source inputs of OM varied with location, with terrestrial inputs dominating proximal to Everglades freshwater discharge, seagrasses dominating in open estuary cores, and a marine mixture of phytoplankton and seagrass in a core from the boundary zone between Florida Bay and the Gulf of Mexico. Significant shifts in OM geochemistry were observed coincident with anthropogenic events of the 20th century, including railroad and road construction in the Florida Keys and Everglades, and also the extensive drainage changes in Everglades hydrology. The sediment record also preserved evidence of the major hurricanes of the last century, with excursions in geochemical composition coincident with Category 4-5 storms. ^
Resumo:
Ribonucleotide reductases (RNR) are essential enzymes that catalyze the reduction of ribonucleotides to 2'-deoxyribonucleotides, which is a critical step that produces precursors for DNA replication and repair. The inactivation of RNR, logically, would discontinue producing the precursors of the DNA of viral or cancer cells, which then would consequently end the cycle of DNA replication. Among different compounds that were found to be inhibitors of RNR, 2'-azido-2'-deoxynucleotide diphosphates (N3NDPs) have been investigated in depth as potent inhibitors of RNR. Decades of investigation has suggested that the inactivation of RNR by N3NDPs is a result of the formation of a nitrogen-centered radical (N·) that is covalently attached to the nucleotide at C3' and cysteine molecule C225 [3'-C(R-S-N·-C-OH)]. Biomimetic simulation reactions for the generation of the nitrogen-centered radicals similar to the one observed during the inactivation of the RNR by azionuclotides was investigated. The study included several modes: (i) theoretical calculation that showed the feasibility of the ring closure reaction between thiyl radicals and azido group; (ii) synthesis of the model azido nucleosides with a linker attached to C3' or C5' having a thiol or vicinal dithiol functionality; (iii) generation of the thiyl radical under both physiological and radiolysis conditions whose role is important in the initiation on RNR cascades; and (iv) analysis of the nitrogen-centered radical species formed during interaction between the thiyl radical and azido group by electron paramagnetic resonance spectroscopy (EPR). Characterization of the aminyl radical species formed during one electron attachment to the azido group of 2'-azido-2'-deoxyuridine and its stereospecifically labelled 1'-, 2'-, 3'-, 4'- or 5,6-[2H 2]-analogues was also examined. This dissertation gave insight toward understanding the mechanism of the formation of the nitrogen-centered radical during the inactivation of RNRs by azidonucleotides as well as the mechanism of action of RNRs that might provide key information necessary for the development of the next generation of antiviral and anticancer drugs.
Resumo:
Isotope signatures of mangrove leaves can vary depending on discrimination associated with plant response to environmental stressors defined by gradients of resources (such as water and nutrient limitation) and regulators (such as salinity and sulfide toxicity). We tested the variability of mangrove isotopic signatures (d13C and d15N) across a stress gradient in south Florida, using green leaves from four mangrove species collected at six sites. Mangroves across the landscape studied are stressed by resource and regulator gradients represented by limited phosphorus concentrations combined with high sulfide concentrations, respectively. Foliar d13C ratios exhibited a range from 24.6 to –32.7‰, and multiple regression analysis showed that 46% of the variability in mangrove d13C composition could be explained by the differences in dissolved inorganic nitrogen, soluble reactive phosphorus, and sulfide porewater concentrations. 15N discrimination in mangrove species ranged from –0.1 to 7.7‰, and porewater N, salinity, and leaf N:Pa ratios accounted for 41% of this variability in mangrove leaves. The increase in soil P availability reduced 15N discrimination due to higher N demand. Scrub mangroves (<1.5 m tall) are more water-use efficient, as indicated by higher d13C; and have greater nutrient use efficiency ratios of P than do tall mangroves (5 to 10 m tall) existing in sites with greater soil P concentrations. The high variability of mangrove d13C and d15N across these resource and regulator gradients could be a confounding factor obscuring the linkages between mangrove wetlands and estuarine food webs. These results support the hypothesis that landscape factors may control mangrove structure and function, so that nutrient biogeochemistry and mangrove-based food webs in adjacent estuaries should account for watershed-specific organic inputs.
Resumo:
Chemical warfare agents continue to pose a global threat despite the efforts of the international community to prohibit their use in warfare. For this reason, improvement in the detection of these compounds remains of forensic interest. Protein adducts formed by the covalent modification of an electrophilic xenobiotic and a nucleophilic amino acid may provide a biomarker of exposure that is stable and specific to compounds of interest (such as chemical warfare agents), and have the capability to extend the window of detection further than the parent compound or circulating metabolites. This research investigated the formation of protein adducts of the nitrogen mustard chemical warfare agents mechlorethamine (HN-2) and tris(2-chloroethyl)amine (HN-3) to lysine and histidine residues found on the blood proteins hemoglobin and human serum albumin. Identified adducts were assessed for reproducibility and stability both in model peptide and whole protein assays. Specificity of these identified adducts was assessed using in vitro assays to metabolize common therapeutic drugs containing nitrogen mustard moieties. Results of the model peptide assays demonstrated that HN-2 and HN-3 were able to form stable adducts with lysine and histidine residues under physiological conditions. Results for whole protein assays identified three histidine adducts on hemoglobin, and three adducts (two lysine residues and one histidine residue) on human serum albumin that were previously unknown. These protein adducts were determined to be reproducible and stable at physiological conditions over a three-week analysis period. Results from the in vitro metabolic assays revealed that adducts formed by HN-2 and HN-3 are specific to these agents, as metabolized therapeutic drugs (chlorambucil, cyclophosphamide, and melphalan) did not form the same adducts on lysine or histidine residues as the previously identified adducts formed by HN-2 and HN-3. Results obtained from the model peptide and full protein work were enhanced by comparing experimental data to theoretical calculations for adduct formation, providing further confirmatory data. This project was successful in identifying and characterizing biomarkers of exposure to HN-2 and HN-3 that are specific and stable and which have the potential to be used for the forensic determination of exposure to these dangerous agents.
Resumo:
Long term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on coastal biogeochemistry. The present study sought to increase understanding of the coastal marine system of South Florida under modern conditions and through the anthropogenic changes in the last century, on scales ranging from individual nutrient cycle processes to seasonal patterns in organic material (OM) under varying hydrodynamic regime, to century scale analysis of sedimentary records. In all applications, carbon and nitrogen stable isotopic compositions of OM were examined as natural recorders of change and nutrient cycling in the coastal system. High spatial and temporal variability in stable isotopic compositions were observed on all time scales. During a transient phytoplankton bloom, ä15N values suggested nitrogen fixation as a nutrient source supporting enhanced productivity. Seasonally, particulate organic material (POM) from ten sites along the Florida Reef Tract and in Florida Bay demonstrated variable fluctuations dependent on hydrodynamic setting. Three separate intra-annual patterns were observed, yet statistical differences were observed between groupings of Florida Bay and Atlantic Ocean sites. The POM ä15N values ranged on a quarterly basis by 7‰, while ä13C varied by 22‰. From a sediment history perspective, four cores collected from Florida Bay further demonstrated the spatial and temporal variability of the system in isotopic composition of bulk OM over time. Source inputs of OM varied with location, with terrestrial inputs dominating proximal to Everglades freshwater discharge, seagrasses dominating in open estuary cores, and a marine mixture of phytoplankton and seagrass in a core from the boundary zone between Florida Bay and the Gulf of Mexico. Significant shifts in OM geochemistry were observed coincident with anthropogenic events of the 20th century, including railroad and road construction in the Florida Keys and Everglades, and also the extensive drainage changes in Everglades hydrology. The sediment record also preserved evidence of the major hurricanes of the last century, with excursions in geochemical composition coincident with Category 4-5 storms.