5 resultados para Nitric oxide synthase 3 polymorphisms
em Digital Commons at Florida International University
Resumo:
Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca 2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via &agr;-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 ± μM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.
Resumo:
Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via α-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 µM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.
Resumo:
Nitric Oxide (NO) is produced in the vascular endothelium where it then diffuses to the adjacent smooth muscle cells (SMC) activating agents known to regulate vascular tone. The close proximity of the site of NO production to the red blood cells (RBC) and its known fast consumption by hemoglobin, suggests that the blood will scavenge most of the NO produced. Therefore, it is unclear how NO is able to play its role in accomplishing vasodilation. Investigation of NO production and consumption rates will allow insight into this paradox. DAF-FM is a sensitive NO fluorescence probe widely used for qualitative assessment of cellular NO production. With the aid of a mathematical model of NO/DAF-FM reaction kinetics, experimental studies were conducted to calibrate the fluorescence signal showing that the slope of fluorescent intensity is proportional to [NO]2 and exhibits a saturation dependence on [DAF-FM]. In addition, experimental data exhibited a Km dependence on [NO]. This finding was incorporated into the model elucidating NO 2 as the possible activating agent of DAF-FM. A calibration procedure was formed and applied to agonist stimulated cells, providing an estimated NO release rate of 0.418 ± 0.18 pmol/cm2s. To assess NO consumption by RBCs, measurements of the rate of NO consumption in a gas stream flowing on top of an RBC solution of specified Hematocrit (Hct) was performed. The consumption rate constant (kbl)in porcine RBCs at 25°C and 45% Hct was estimated to be 3500 + 700 s-1. kbl is highly dependent on Hct and can reach up to 9900 + 4000 s-1 for 60% Hct. The nonlinear dependence of kbl on Hct suggests a predominant role for extracellular diffusion in limiting NO uptake. Further simulations showed a linear relationship between varying NO production rates and NO availability in the SMCs utilizing the estimated NO consumption rate. The corresponding SMC [NO] level for the average NO production rate estimated was approximately 15.1 nM. With the aid of experimental and theoretical methods we were able to examine the NO paradox and exhibit that endothelial derived NO is able to escape scavenging by RBCs to diffuse to the SMCs.
Resumo:
Nitric Oxide (NO) has been known for long to regulate vessel tone. However, the close proximity of the site of NO production to "sinks" of NO such as hemoglobin (Hb) in blood suggest that blood will scavenge most of the NO produced. Therefore, it is unclear how NO is able to play its physiological roles. The current study deals with means by which this could be understood. Towards studying the role of nitrosothiols and nitrite in preserving NO availability, a study of the kinetics of glutathione (GSH) nitrosation by NO donors in aerated buffered solutions was undertaken first. Results suggest an increase in the rate of the corresponding nitrosothiol (GSNO) formation with an increase in GSH with a half-maximum constant EC50 that depends on NO concentration, thus indicating a significant contribution of NO2 mediated nitrosation in the production of GSNO. Next, the ability of nitrite to be reduced to NO in the smooth muscle cells was evaluated. The NO formed was inhibited by sGC inhibitors and accelerated by activators and was independent of O2 concentration. Nitrite transport mechanisms and effects of exogenous nitrate on transport and reduction of nitrite were examined. The results showed that sGC can mediate nitrite reduction to NO and nitrite is transported across the smooth muscle cell membrane via anion channels, both of which can be attenuated by nitrate. Finally, a 2-D axisymmetric diffusion model was constructed to test the accumulation of NO in the smooth muscle layer from reduction of nitrite. It was observed that at the end of the simulation period with physiological concentrations of nitrite in the smooth muscle cells (SMC), a low sustained NO generated from nitrite reduction could maintain significant sGC activity and might affect vessel tone. The major nitrosating mechanism in the circulation at reduced O2 levels was found to be anaerobic and a Cu+ dependent GSNO reduction activity was found to deliver minor amounts of NO from physiological GSNO levels in the tissue.
Resumo:
Nitric Oxide (NO) has been known for long to regulate vessel tone. However, the close proximity of the site of NO production to “sinks” of NO such as hemoglobin (Hb) in blood suggest that blood will scavenge most of the NO produced. Therefore, it is unclear how NO is able to play its physiological roles. The current study deals with means by which this could be understood. Towards studying the role of nitrosothiols and nitrite in preserving NO availability, a study of the kinetics of glutathione (GSH) nitrosation by NO donors in aerated buffered solutions was undertaken first. Results suggest an increase in the rate of the corresponding nitrosothiol (GSNO) formation with an increase in GSH with a half-maximum constant EC50 that depends on NO concentration, thus indicating a significant contribution of ∙NO2 mediated nitrosation in the production of GSNO. Next, the ability of nitrite to be reduced to NO in the smooth muscle cells was evaluated. The NO formed was inhibited by sGC inhibitors and accelerated by activators and was independent of O2 concentration. Nitrite transport mechanisms and effects of exogenous nitrate on transport and reduction of nitrite were examined. The results showed that sGC can mediate nitrite reduction to NO and nitrite is transported across the smooth muscle cell membrane via anion channels, both of which can be attenuated by nitrate. Finally, a 2 – D axisymmetric diffusion model was constructed to test the accumulation of NO in the smooth muscle layer from reduction of nitrite. It was observed that at the end of the simulation period with physiological concentrations of nitrite in the smooth muscle cells (SMC), a low sustained NO generated from nitrite reduction could maintain significant sGC activity and might affect vessel tone. The major nitrosating mechanism in the circulation at reduced O2 levels was found to be anaerobic and a Cu+ dependent GSNO reduction activity was found to deliver minor amounts of NO from physiological GSNO levels in the tissue.