10 resultados para Neumann Boundary Conditions
em Digital Commons at Florida International University
Resumo:
A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.
Resumo:
An awareness of mercury (Hg) contamination in various aquatic environments around the world has increased over the past decade, mostly due to its ability to concentrate in the biota. Because the presence and distribution of Hg in aquatic systems depend on many factors (e.g., pe, pH, salinity, temperature, organic and inorganic ligands, sorbents, etc.), it is crucial to understand its fate and transport in the presence of complexing constituents and natural sorbents, under those different factors. An improved understanding of the subject will support the selection of monitoring, remediation, and restoration technologies. The coupling of equilibrium chemical reactions with transport processes in the model PHREEQC offers an advantage in simulating and predicting the fate and transport of aqueous chemical species of interest. Thus, a great variety of reactive transport problems could be addressed in aquatic systems with boundary conditions of specific interest. Nevertheless, PHREEQC lacks a comprehensive thermodynamic database for Hg. Therefore, in order to use PHREEQC to address the fate and transport of Hg in aquatic environments, it is necessary to expand its thermodynamic database, confirm it and then evaluate it in applications where potential exists for its calibration and continued validation. The objectives of this study were twofold: 1) to develop, expand, and confirm the Hg database of the hydrogeochemical PHREEQC to enhance its capability to simulate the fate of Hg species in the presence of complexing constituents and natural sorbents under different conditions of pH, redox, salinity and temperature; and 2) to apply and evaluate the new database in flow and transport scenarios, at two field test beds: Oak Ridge Reservation, Oak Ridge, TN and Everglades National Park, FL, where Hg is present and is of much concern. Overall, this research enhanced the capability of the PHREEQC model to simulate the coupling of the Hg reactions in transport conditions. It also demonstrated its usefulness when applied to field situations.
Resumo:
What constitutes effective corporate governance? Which director characteristics render boards effective at positively influencing firm-level performance outcomes? This dissertation examines these questions by taking a multilevel, multidisciplinary approach to corporate governance. I explore the individual-, team-, and firm- level factors that enable directors to serve effectively as strategic resources during international expansion. I argue that directors' international experience improves their ability to serve as effective strategic consultants and resource providers to firms during the complex internationalization process. However, unlike prior research, which tends to assume that directors with the potential to provide important resources uniformly do so, I acknowledge contextual factors (i.e. board cohesiveness, strategic relevance of directors' experience) that affect their propensity to actually influence outcomes. I explore these issues in three essays: one review essay and two empirical essays.^ In the first empirical essay, I integrate resource dependence theory with insights from social-psychological research to explore the influence of board capital on firms' cross-border M&A performance. Using a sample of cross-border M&As completed by S&P 500 firms from 2004-2009, I find evidence that directors' depth of international experience is associated with superior pre-deal outcomes. This suggests that boards' deep, market-specific knowledge is valuable during the target selection phase. I further find that directors' breadth of international experience is associated with superior post-deal performance, suggesting that these directors' global mindset helps firms in the post-M&A integration phase. I also find that these relationships are positively moderated by board cohesiveness, measured by boards' internal social ties.^ In the second empirical essay, I explore the boundary conditions of international board capital by examining how the characteristics of firms' internationalization strategy moderate the relationship between board capital and firm performance. Using a panel of 377 S&P 500 firms observed from 2004-2011, I find that boards' depth of international experience and social capital are more important during early stages of internationalization, when firms tend to lack market knowledge and legitimacy in the host markets. On the other hand, I find that breadth of international experience has a stronger relationship with performance when firms' have higher scope of internationalization, when information-processing demands are higher.^
Resumo:
Experiments were conducted to show the effects of thermal and geometric boundary conditions on the liquid pool of a binary alloy system which is undergoing phase change, solidification. Transparent analogue solutions were selected for study and experimental apparatus were designed and built. Thermal distribution and concentration data were collected and analysed for the melt pool of various selected geometries and boundary conditions of the systems under study. The data indicate-that characteristic flows develop for both Hypereutectic and Hypoeutectic concentration levels and that the development of macrosegregation and microsegregation defects in continuous casting materials can be minimised by the adjustment of the process variables.
Resumo:
A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.
Resumo:
Engineering analysis in geometric models has been the main if not the only credible/reasonable tool used by engineers and scientists to resolve physical boundaries problems. New high speed computers have facilitated the accuracy and validation of the expected results. In practice, an engineering analysis is composed of two parts; the design of the model and the analysis of the geometry with the boundary conditions and constraints imposed on it. Numerical methods are used to resolve a large number of physical boundary problems independent of the model geometry. The time expended due to the computational process are related to the imposed boundary conditions and the well conformed geometry. Any geometric model that contains gaps or open lines is considered an imperfect geometry model and major commercial solver packages are incapable of handling such inputs. Others packages apply different kinds of methods to resolve this problems like patching or zippering; but the final resolved geometry may be different from the original geometry, and the changes may be unacceptable. The study proposed in this dissertation is based on a new technique to process models with geometrical imperfection without the necessity to repair or change the original geometry. An algorithm is presented that is able to analyze the imperfect geometric model with the imposed boundary conditions using a meshfree method and a distance field approximation to the boundaries. Experiments are proposed to analyze the convergence of the algorithm in imperfect models geometries and will be compared with the same models but with perfect geometries. Plotting results will be presented for further analysis and conclusions of the algorithm convergence
Resumo:
The aim of the thesis is to develop a critique of current liberal conceptualizations of international order. In order to conduct this critique, this thesis revisits the arguments first put forth by the German legal and political theorist Carl Schmitt. Schmitt conceptualizes a tripartite unity between law, order, and place. This unity, established at the constituent moment of land-appropriation, forms a concrete nomos, which subsequently creates the contours of the legal and political order. The establishment of the concrete order is necessarily the construction of a territorial boundary that designates an inside and an outside of the polity. By speaking of a nomos of the earth, Schmitt globalized this understanding of concrete order by looking at the various historical developments that created a "line" between the concrete applicability of interstate norms and a region where the exceptional situation prevails. The critique presented in this thesis is concerned with the lack of concrete boundary conditions within the current international legal order. It is argued that this lack of a well-defined boundary condition is what results in extreme forms of violence that were traditionally bracketed.
Resumo:
The effectiveness of an optimization algorithm can be reduced to its ability to navigate an objective function’s topology. Hybrid optimization algorithms combine various optimization algorithms using a single meta-heuristic so that the hybrid algorithm is more robust, computationally efficient, and/or accurate than the individual algorithms it is made of. This thesis proposes a novel meta-heuristic that uses search vectors to select the constituent algorithm that is appropriate for a given objective function. The hybrid is shown to perform competitively against several existing hybrid and non-hybrid optimization algorithms over a set of three hundred test cases. This thesis also proposes a general framework for evaluating the effectiveness of hybrid optimization algorithms. Finally, this thesis presents an improved Method of Characteristics Code with novel boundary conditions, which better characterizes pipelines than previous codes. This code is coupled with the hybrid optimization algorithm in order to optimize the operation of real-world piston pumps.
Resumo:
What constitutes effective corporate governance? Which director characteristics render boards effective at positively influencing firm-level performance outcomes? This dissertation examines these questions by taking a multilevel, multidisciplinary approach to corporate governance. I explore the individual-, team-, and firm- level factors that enable directors to serve effectively as strategic resources during international expansion. I argue that directors’ international experience improves their ability to serve as effective strategic consultants and resource providers to firms during the complex internationalization process. However, unlike prior research, which tends to assume that directors with the potential to provide important resources uniformly do so, I acknowledge contextual factors (i.e. board cohesiveness, strategic relevance of directors’ experience) that affect their propensity to actually influence outcomes. I explore these issues in three essays: one review essay and two empirical essays. In the first empirical essay, I integrate resource dependence theory with insights from social-psychological research to explore the influence of board capital on firms’ cross-border M&A performance. Using a sample of cross-border M&As completed by S&P 500 firms from 2004-2009, I find evidence that directors’ depth of international experience is associated with superior pre-deal outcomes. This suggests that boards’ deep, market-specific knowledge is valuable during the target selection phase. I further find that directors’ breadth of international experience is associated with superior post-deal performance, suggesting that these directors’ global mindset helps firms in the post-M&A integration phase. I also find that these relationships are positively moderated by board cohesiveness, measured by boards’ internal social ties. In the second empirical essay, I explore the boundary conditions of international board capital by examining how the characteristics of firms’ internationalization strategy moderate the relationship between board capital and firm performance. Using a panel of 377 S&P 500 firms observed from 2004-2011, I find that boards’ depth of international experience and social capital are more important during early stages of internationalization, when firms tend to lack market knowledge and legitimacy in the host markets. On the other hand, I find that breadth of international experience has a stronger relationship with performance when firms’ have higher scope of internationalization, when information-processing demands are higher.
Resumo:
In the presented thesis work, the meshfree method with distance fields was coupled with the lattice Boltzmann method to obtain solutions of fluid-structure interaction problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the coupling algorithm combining the meshfree method with distance fields and the lattice Boltzmann method were investigated. Convergence and accuracy of the methodology was validated by analytical solutions. The research was focused on fluid-structure interaction solutions in complex, mesh-resistant domains as both the lattice Boltzmann method and the meshfree method with distance fields are particularly adept in these situations. Furthermore, the fluid solution provided by the lattice Boltzmann method is massively scalable, allowing extensive use of cutting edge parallel computing resources to accelerate this phase of the solution process. The meshfree method with distance fields allows for exact satisfaction of boundary conditions making it possible to exactly capture the effects of the fluid field on the solid structure.