4 resultados para Network operations
em Digital Commons at Florida International University
Resumo:
This dissertation introduces a new system for handwritten text recognition based on an improved neural network design. Most of the existing neural networks treat mean square error function as the standard error function. The system as proposed in this dissertation utilizes the mean quartic error function, where the third and fourth derivatives are non-zero. Consequently, many improvements on the training methods were achieved. The training results are carefully assessed before and after the update. To evaluate the performance of a training system, there are three essential factors to be considered, and they are from high to low importance priority: (1) error rate on testing set, (2) processing time needed to recognize a segmented character and (3) the total training time and subsequently the total testing time. It is observed that bounded training methods accelerate the training process, while semi-third order training methods, next-minimal training methods, and preprocessing operations reduce the error rate on the testing set. Empirical observations suggest that two combinations of training methods are needed for different case character recognition. Since character segmentation is required for word and sentence recognition, this dissertation provides also an effective rule-based segmentation method, which is different from the conventional adaptive segmentation methods. Dictionary-based correction is utilized to correct mistakes resulting from the recognition and segmentation phases. The integration of the segmentation methods with the handwritten character recognition algorithm yielded an accuracy of 92% for lower case characters and 97% for upper case characters. In the testing phase, the database consists of 20,000 handwritten characters, with 10,000 for each case. The testing phase on the recognition 10,000 handwritten characters required 8.5 seconds in processing time.
Resumo:
The trend of green consumerism and increased standardization of environmental regulations has driven multinational corporations (MNCs) to seek standardization of environmental practices or at least seek to be associated with such behavior. In fact, many firms are seeking to free ride on this global green movement, without having the actual ecological footprint to substantiate their environmental claims. While scholars have articulated the benefits from such optimization of uniform global green operations, the challenges for MNCs to control and implement such operations are understudied. For firms to translate environmental commitment to actual performance, the obstacles are substantial, particularly for the MNC. This is attributed to headquarters' (HQ) control challenges (1) in managing core elements of the corporate environmental management (CEM) process and specifically matching verbal commitment and policy with ecological performance and by (2) the fact that the MNC operates in multiple markets and the HQ is required to implement policy across complex subsidiary networks consisting of diverse and distant units. Drawing from the literature on HQ challenges of MNC management and control, this study examines (1) how core components of the CEM process impact optimization of global environmental performance (GEP) and then uses network theory to examine how (2) a subsidiary network's dimensions can present challenges to the implementation of green management policies. It presents a framework for CEM which includes (1) MNCs' Verbal environmental commitment, (2) green policy Management which guides standards for operations, (3) actual environmental Performance reflected in a firm's ecological footprint and (4) corporate environmental Reputation (VMPR). Then it explains how an MNC's key subsidiary network dimensions (density, diversity, and dispersion) create challenges that hinder the relationship between green policy management and actual environmental performance. It combines content analysis, multiple regression, and post-hoc hierarchal cluster analysis to study US manufacturing MNCs. The findings support a positive significant effect of verbal environmental commitment and green policy management on actual global environmental performance and environmental reputation, as well as a direct impact of verbal environmental commitment on green policy management. Unexpectedly, network dimensions were not found to moderate the relationship between green management policy and GEP.
Resumo:
The applications of micro-end-milling operations have increased recently. A Micro-End-Milling Operation Guide and Research Tool (MOGART) package has been developed for the study and monitoring of micro-end-milling operations. It includes an analytical cutting force model, neural network based data mapping and forecasting processes, and genetic algorithms based optimization routines. MOGART uses neural networks to estimate tool machinability and forecast tool wear from the experimental cutting force data, and genetic algorithms with the analytical model to monitor tool wear, breakage, run-out, cutting conditions from the cutting force profiles. ^ The performance of MOGART has been tested on the experimental data of over 800 experimental cases and very good agreement has been observed between the theoretical and experimental results. The MOGART package has been applied to the micro-end-milling operation study of Engineering Prototype Center of Radio Technology Division of Motorola Inc. ^
Resumo:
The applications of micro-end-milling operations have increased recently. A Micro-End-Milling Operation Guide and Research Tool (MOGART) package has been developed for the study and monitoring of micro-end-milling operations. It includes an analytical cutting force model, neural network based data mapping and forecasting processes, and genetic algorithms based optimization routines. MOGART uses neural networks to estimate tool machinability and forecast tool wear from the experimental cutting force data, and genetic algorithms with the analytical model to monitor tool wear, breakage, run-out, cutting conditions from the cutting force profiles. The performance of MOGART has been tested on the experimental data of over 800 experimental cases and very good agreement has been observed between the theoretical and experimental results. The MOGART package has been applied to the micro-end-milling operation study of Engineering Prototype Center of Radio Technology Division of Motorola Inc.