2 resultados para NONLINEAR-INTERACTION
em Digital Commons at Florida International University
Resumo:
The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). ^ In the present work, we follow the method originally proposed by Van Wet in LRT. The Hamiltonian in this approach is of the form: H = H 0(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H0 - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H0(E, B), include the external fields without any limitation on strength. ^ In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0, t → ∞, so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. ^ In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. ^ In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices. ^
Resumo:
The study of transport processes in low-dimensional semiconductors requires a rigorous quantum mechanical treatment. However, a full-fledged quantum transport theory of electrons (or holes) in semiconductors of small scale, applicable in the presence of external fields of arbitrary strength, is still not available. In the literature, different approaches have been proposed, including: (a) the semiclassical Boltzmann equation, (b) perturbation theory based on Keldysh's Green functions, and (c) the Quantum Boltzmann Equation (QBE), previously derived by Van Vliet and coworkers, applicable in the realm of Kubo's Linear Response Theory (LRT). In the present work, we follow the method originally proposed by Van Vliet in LRT. The Hamiltonian in this approach is of the form: H = H°(E, B) + λV, where H0 contains the externally applied fields, and λV includes many-body interactions. This Hamiltonian differs from the LRT Hamiltonian, H = H° - AF(t) + λV, which contains the external field in the field-response part, -AF(t). For the nonlinear problem, the eigenfunctions of the system Hamiltonian, H°(E, B) , include the external fields without any limitation on strength. In Part A of this dissertation, both the diagonal and nondiagonal Master equations are obtained after applying projection operators to the von Neumann equation for the density operator in the interaction picture, and taking the Van Hove limit, (λ → 0 , t → ∞ , so that (λ2 t)n remains finite). Similarly, the many-body current operator J is obtained from the Heisenberg equation of motion. In Part B, the Quantum Boltzmann Equation is obtained in the occupation-number representation for an electron gas, interacting with phonons or impurities. On the one-body level, the current operator obtained in Part A leads to the Generalized Calecki current for electric and magnetic fields of arbitrary strength. Furthermore, in this part, the LRT results for the current and conductance are recovered in the limit of small electric fields. In Part C, we apply the above results to the study of both linear and nonlinear longitudinal magneto-conductance in quasi one-dimensional quantum wires (1D QW). We have thus been able to quantitatively explain the experimental results, recently published by C. Brick, et al., on these novel frontier-type devices.