2 resultados para NITROGEN LEVELS

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tree islands in the Everglades wetlands are centers of biodiversity and targets of restoration, yet little is known about the pattern of water source utilization by the constituent woody plant communities: upland hammocks and flooded swamp forests. Two potential water sources exist: (1) entrapped rainwater in the vadose zone of the organic soil (referred to as upland soil water), that becomes enriched in phosphorus, and (2) phosphorus-poor groundwater/surface water (referred to as regional water). Using natural stable isotope abundance as a tracer, we observed that hammock plants used upland soil water in the wet season and shifted to regional water uptake in the dry season, while swamp forest plants used regional water throughout the year. Consistent with the previously observed phosphorus concentrations of the two water sources, hammock plants had a greater annual mean foliar phosphorus concentration over swamp forest plants, thereby supporting the idea that tree island hammocks are islands of high phosphorus concentrations in the oligotrophic Everglades. Foliar nitrogen levels in swamp forest plants were higher than those of hammock plants. Linking water sources with foliar nutrient concentrations can indicate nutrient sources and periods of nutrient uptake, thereby linking hydrology with the nutrient regimes of different plant communities in wetland ecosystems. Our results are consistent with the hypotheses that (1) over long periods, upland tree island communities incrementally increase their nutrient concentration by incorporating marsh nutrients through transpiration seasonally, and (2) small differences in micro-topography in a wetland ecosystem can lead to large differences in water and nutrient cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing evidence that certain microbially-derived compounds may account for part of the aquatic dissolved organic nitrogen (DON) pool. Enantiomeric ratios of amino acids were used to assess the microbial input to the DON pool in the Florida Everglades, USA. Elevated levels of d-alanine, d-aspartic acid, d-glutamic acid and d-serine indicated the presence of peptidoglycan in the samples. The estimated peptidoglycan contribution to amino acid nitrogen ranged from 2.8 ± 0.1% to 6.4 ± 0.9%, increasing with salinity from freshwater to coastal waters. The distribution of individual d-amino acids in the samples suggests additional inputs to DON, possibly from archaea or from abiotic racemization of l-amino acids.