11 resultados para NITROBENZENE INTERFACE
em Digital Commons at Florida International University
Resumo:
Poor agreement between 3H/3He ages and CFC-11 and CFC-12 ages suggests that CFCs may not be conservative tracers in the Everglades National Park. 3H/3He ages were used to calculate the expected concentration of CFC-11 and CFC-12 in groundwater from wells 2 to 73 m deep. The expected concentrations of CFCs were compared to the measured concentrations and plots of the % CFC-12 and CFC-11 remaining offered no evidence that significant CFC removal was occurring in the groundwater at depths ≥2 m, suggesting that CFC removal occurs at shallower depths. Except where CFC contamination was suspected, CFC-11, CFC-12 and CFC-113 concentrations in fresh surface water were nearly always below solubility equilibrium with the atmosphere. Measurements of CFC-11, CFC-12 and CFC-113 in pore water indicate a 50–90% decrease in concentration 5 cm below the groundwater–surface water (GW–SW) interface. In the same 5 cm interval CH4 concentrations increased by 300–1000%. This suggested that CFCs were removed at the GW–SW interface, possibly by methane-producing bacteria. CFC derived recharge ages should therefore be viewed with caution when recharging water percolates through anoxic methanogenic sediments.
Resumo:
The need to change the interface of the Family and Consumer Sciences (FCS) Program at Florida International University (FlU) has evolved because of changes in our family structure, culture, resources, educational reform, new knowledge in basic disciplines and applied research.
Resumo:
This research first evaluated the effects of urban wildland interface on reproductive biology of the Big Pine Partridge Pea, Chamaecrista keyensis, an understory herb that is endemic to Big Pine Key, Florida. I found that C. keyensis was self-compatible, but depended on bees for seed set. Furthermore, individuals of C. keyensis in urban habitats suffered higher seed predation and therefore set fewer seeds than forest interior plants. ^ I then focused on the effects of fire at different times of the year, summer (wet) and winter (dry), on the population dynamics and population viability of C. keyensis. I found that C. keyensis population recovered faster after winter burns and early summer burns (May–June) than after late summer burns (July–September) due to better survival and seedling recruitment following former fires. Fire intensity had positive effects on reproduction of C. keyensis. In contrast, no significant fire intensity effects were found on survival, growth, and seedling recruitment. This indicated that better survival and seedling recruitment following winter and early summer burns (compared with late summer burns) were due to the reproductive phenology of the plant in relation to fires rather than differences in fire intensity. Deterministic population modeling showed that time since fire significantly affected the finite population growth rates (λ). Particularly, recently burned plots had the largest λ. In addition, effects of timing of fires on λ were most pronounced the year of burn, but not the subsequent years. The elasticity analyses suggested that maximizing survival is an effective way to minimize the reduction in finite population growth rate the year of burn. Early summer fires or dry-season fires may achieve this objective. Finally, stochastic simulations indicated that the C. keyensis population had lower extinction risk and population decline probability if burned in the winter than in the late summer. A fire frequency of approximately 7 years would create the lowest extinction probability for C. keyensis. A fire management regime including a wide range of burning seasons may be essential for the continued existence of C. keyensis and other endemic species of pine rockland on Big Pine Key. ^
Resumo:
This dissertation introduces the design of a multimodal, adaptive real-time assistive system as an alternate human computer interface that can be used by individuals with severe motor disabilities. The proposed design is based on the integration of a remote eye-gaze tracking system, voice recognition software, and a virtual keyboard. The methodology relies on a user profile that customizes eye gaze tracking using neural networks. The user profiling feature facilitates the notion of universal access to computing resources for a wide range of applications such as web browsing, email, word processing and editing. ^ The study is significant in terms of the integration of key algorithms to yield an adaptable and multimodal interface. The contributions of this dissertation stem from the following accomplishments: (a) establishment of the data transport mechanism between the eye-gaze system and the host computer yielding to a significantly low failure rate of 0.9%; (b) accurate translation of eye data into cursor movement through congregate steps which conclude with calibrated cursor coordinates using an improved conversion function; resulting in an average reduction of 70% of the disparity between the point of gaze and the actual position of the mouse cursor, compared with initial findings; (c) use of both a moving average and a trained neural network in order to minimize the jitter of the mouse cursor, which yield an average jittering reduction of 35%; (d) introduction of a new mathematical methodology to measure the degree of jittering of the mouse trajectory; (e) embedding an onscreen keyboard to facilitate text entry, and a graphical interface that is used to generate user profiles for system adaptability. ^ The adaptability nature of the interface is achieved through the establishment of user profiles, which may contain the jittering and voice characteristics of a particular user as well as a customized list of the most commonly used words ordered according to the user's preferences: in alphabetical or statistical order. This allows the system to successfully provide the capability of interacting with a computer. Every time any of the sub-system is retrained, the accuracy of the interface response improves even more. ^
Resumo:
Investigation of the performance of engineering project organizations is critical for understanding and eliminating inefficiencies in today’s dynamic global markets. The existing theoretical frameworks consider project organizations as monolithic systems and attribute the performance of project organizations to the characteristics of the constituents. However, project organizations consist of complex interdependent networks of agents, information, and resources whose interactions give rise to emergent properties that affect the overall performance of project organizations. Yet, our understanding of the emergent properties in project organizations and their impact on project performance is rather limited. This limitation is one of the major barriers towards creation of integrated theories of performance assessment in project organizations. The objective of this paper is to investigate the emergent properties that affect the ability of project organization to cope with uncertainty. Based on the theories of complex systems, we propose and test a novel framework in which the likelihood of performance variations in project organizations could be investigated based on the environment of uncertainty (i.e., static complexity, dynamic complexity, and external source of disruption) as well as the emergent properties (i.e., absorptive capacity, adaptive capacity, and restorative capacity) of project organizations. The existence and significance of different dimensions of the environment of uncertainty and emergent properties in the proposed framework are tested based on the analysis of the information collected from interviews with senior project managers in the construction industry. The outcomes of this study provide a novel theoretical lens for proactive bottom-up investigation of performance in project organizations at the interface of emergent properties and uncertainty
Resumo:
This thesis describes a study conducted to develop and refine a measure, the Social Institutions Rating (SIR), a group administered, self-report measure of institutional attributes and characteristics. This thesis reports data on the psychometric properties of the SIR. Exploratory analyses are reported investigating the empirical effects of social institutions on identity formation within two ethnic/cultural groups, Euroamericans and Hispanics. Based on previous studies with ethnic minorities, a directional hypothesis was tested. The hypothesis that subjects in the Euroamerican sample have a higher identity status than the Hispanic sample for three identity domains (personal, interpersonal, and world view) was not confirmed. The hypothesis that subjects in the Euroamerican sample would score higher on identity satisfaction and lower on identity dissatisfaction than the Hispanic sample for nine content areas of identity was partially supported but in the opposite direction. Hispanics reported higher satisfaction on sense of self and religious issues than Euroamericans.
Resumo:
Retrieval, treatment, and disposal of high-level radioactive waste (HLW) is expected to cost between 100 and 300 billion dollars. The risk to workers, public health, and the environment are also a major area of concern for HLW. Visualization of the interface between settled solids and the optically opaque liquid is needed for retrieval of the waste from underground storage tanks. A Profiling sonar selected for this research generates 2-D image of the interface. Multiple experiments were performed to demonstrate the effectiveness of sonar in real-time monitoring the interface inside HLW tanks. First set of experiments demonstrated that objects shapes could be identified even when 30% of solids entrained in liquid, thereby mapping the interface. Simulation of sonar system validated these results. Second set of experiments confirmed the sonar’s ability in detecting the solids with density similar to the immersed liquid. Third set of experiments determined the affects of near by objects on image resolution. Final set of experiments proved the functional and chemical capabilities of sonar in caustic solution.
Resumo:
The design of interfaces to facilitate user search has become critical for search engines, ecommercesites, and intranets. This study investigated the use of targeted instructional hints to improve search by measuring the quantitative effects of users' performance and satisfaction. The effects of syntactic, semantic and exemplar search hints on user behavior were evaluated in an empirical investigation using naturalistic scenarios. Combining the three search hint components, each with two levels of intensity, in a factorial design generated eight search engine interfaces. Eighty participants participated in the study and each completed six realistic search tasks. Results revealed that the inclusion of search hints improved user effectiveness, efficiency and confidence when using the search interfaces, but with complex interactions that require specific guidelines for search interface designers. These design guidelines will allow search designers to create more effective interfaces for a variety of searchapplications.
Resumo:
Membrane-like structure formed by surfactant molecules of didodecyldimethylammonium bromide (DDAB) on both HOPG and gold electrodes were studied with AFM and SPR techniques. The study shows that the thickness of the adsorbed layer of DDAB is strongly dependent on the concentration of the vesicle solution. We have also investigated the adsorption of redox protein, Cytochrome c, on graphite electrode with in situ tapping mode AFM. The protein adsorbs spontaneously onto the electrode covered with an adsorbed phosphate layer and forms a uniform monolayer. The adsorbed protein exhibits a reversible electron transfer at 0.17 V (Ag/AgCI) once the electrode potential has been increased to 0.75V. Using surface plasmon resonance spectroscopy we have measured subtle conformational change in protein, Cyt c, due to electron transfer of a single electron on MPA-coated gold electrode. The electron transfer induced change in the resonant angle is about 0.006 deg., which corresponds to ~ 0.2 A decreases in the thickness. This is consistent with that reduced state is more compact than the oxidized state.
Resumo:
Computing devices have become ubiquitous in our technologically-advanced world, serving as vehicles for software applications that provide users with a wide array of functions. Among these applications are electronic learning software, which are increasingly being used to educate and evaluate individuals ranging from grade school students to career professionals. This study will evaluate the design and implementation of user interfaces in these pieces of software. Specifically, it will explore how these interfaces can be developed to facilitate the use of electronic learning software by children. In order to do this, research will be performed in the area of human-computer interaction, focusing on cognitive psychology, user interface design, and software development. This information will be analyzed in order to design a user interface that provides an optimal user experience for children. This group will test said interface, as well as existing applications, in order to measure its usability. The objective of this study is to design a user interface that makes electronic learning software more usable for children, facilitating their learning process and increasing their academic performance. This study will be conducted by using the Adobe Creative Suite to design the user interface and an Integrated Development Environment to implement functionality. These are digital tools that are available on computing devices such as desktop computers, laptops, and smartphones, which will be used for the development of software. By using these tools, I hope to create a user interface for electronic learning software that promotes usability while maintaining functionality. This study will address the increasing complexity of computing software seen today – an issue that has risen due to the progressive implementation of new functionality. This issue is having a detrimental effect on the usability of electronic learning software, increasing the learning curve for targeted users such as children. As we make electronic learning software an integral part of educational programs in our schools, it is important to address this in order to guarantee them a successful learning experience.
Resumo:
Computing devices have become ubiquitous in our technologically-advanced world, serving as vehicles for software applications that provide users with a wide array of functions. Among these applications are electronic learning software, which are increasingly being used to educate and evaluate individuals ranging from grade school students to career professionals. This study will evaluate the design and implementation of user interfaces in these pieces of software. Specifically, it will explore how these interfaces can be developed to facilitate the use of electronic learning software by children. In order to do this, research will be performed in the area of human-computer interaction, focusing on cognitive psychology, user interface design, and software development. This information will be analyzed in order to design a user interface that provides an optimal user experience for children. This group will test said interface, as well as existing applications, in order to measure its usability. The objective of this study is to design a user interface that makes electronic learning software more usable for children, facilitating their learning process and increasing their academic performance. This study will be conducted by using the Adobe Creative Suite to design the user interface and an Integrated Development Environment to implement functionality. These are digital tools that are available on computing devices such as desktop computers, laptops, and smartphones, which will be used for the development of software. By using these tools, I hope to create a user interface for electronic learning software that promotes usability while maintaining functionality. This study will address the increasing complexity of computing software seen today – an issue that has risen due to the progressive implementation of new functionality. This issue is having a detrimental effect on the usability of electronic learning software, increasing the learning curve for targeted users such as children. As we make electronic learning software an integral part of educational programs in our schools, it is important to address this in order to guarantee them a successful learning experience.