2 resultados para N-acetyl-aspartyl-glutamate

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restriction enzyme inhibition and lambda exonuclease studies indicate that carcinogen N-acetoxy-N-acetyl-2 aminofluorene (AAAF) binds to sequences on ɸX174 RF and SV40 plasmids DNA that are similar to the eight preferred binding sites previously located on pBR 322. Both DNAs were digested with enzyme Hinf I and resultant fragments 32P end-labeled. Labeled fragments were reacted with the carcinogen to give one to sixteen bound moieties per DNA. Fragments were isolated and restriccion enzyme and lambda exonuclease inhibition assays were performed. Inhibition detected occurred at selected sites and was not specific for a certain enzyme or certain size of recognition sequence. Results of these assays allow mapping of the location of high affinity binding sites of the carcinogen on both DNAs. All sites have common sequence elements: the presence of either the sequence T(G/C)TT(G/C) or the sequence T(G/C) CTT(G/C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate the efficacy of using monosodium glutamate (MSG) as a means to increase palatability and prospective consumption of vegetables at a congregate meal site with Cuban-American clients. Thirty to 32 subjects participated in hedonic testing each day. MSG-enhanced (2 g MSG/500 g vegetable) and non-enhanced beets, string beans, carrots and peas were evaluated for palatability, preference and prospective consumption. Results showed that MSG significantly increased both palatability and prospective consumption of string beans (ps < .05) but not of the other 3 vegetables tested. These findings provide some evidence that MSG can be used to increase the palatability of vegetables served at congregate meal sites. However, these results suggest that older adults may not find the palatability of some vegetables to be improved by MSG and that optimal flavor enhancement cannot be achieved by adding the same amount of MSG to every vegetable.