6 resultados para Multiple Criteria Decision Making (MCDM)
em Digital Commons at Florida International University
Resumo:
The improvement in living standards and the development of telecommunications have led to a large increase in the number of Internet users in China. It has been reported by China National Network Information Center that the number of Internet users in China has reached 33.7 million in 2001, ranting the country third in the world. This figure also shows that more and more Chinese residents have accepted the Internet and use it to obtain information and compete their travel planning. Milne and Ateljevic stated that the integration of computing and telecommunications would create a global information network based mostly on the Internet. The Internet, especially the World Wide Web, has had a great impact on the hospitality and tourism industry in recent years. The WWW plays an important role in mediating between customers and hotel companies as a place to acquire information acquisition and transact business.
Resumo:
There is growing popularity in the use of composite indices and rankings for cross-organizational benchmarking. However, little attention has been paid to alternative methods and procedures for the computation of these indices and how the use of such methods may impact the resulting indices and rankings. This dissertation developed an approach for assessing composite indices and rankings based on the integration of a number of methods for aggregation, data transformation and attribute weighting involved in their computation. The integrated model developed is based on the simulation of composite indices using methods and procedures proposed in the area of multi-criteria decision making (MCDM) and knowledge discovery in databases (KDD). The approach developed in this dissertation was automated through an IT artifact that was designed, developed and evaluated based on the framework and guidelines of the design science paradigm of information systems research. This artifact dynamically generates multiple versions of indices and rankings by considering different methodological scenarios according to user specified parameters. The computerized implementation was done in Visual Basic for Excel 2007. Using different performance measures, the artifact produces a number of excel outputs for the comparison and assessment of the indices and rankings. In order to evaluate the efficacy of the artifact and its underlying approach, a full empirical analysis was conducted using the World Bank's Doing Business database for the year 2010, which includes ten sub-indices (each corresponding to different areas of the business environment and regulation) for 183 countries. The output results, which were obtained using 115 methodological scenarios for the assessment of this index and its ten sub-indices, indicated that the variability of the component indicators considered in each case influenced the sensitivity of the rankings to the methodological choices. Overall, the results of our multi-method assessment were consistent with the World Bank rankings except in cases where the indices involved cost indicators measured in per capita income which yielded more sensitive results. Low income level countries exhibited more sensitivity in their rankings and less agreement between the benchmark rankings and our multi-method based rankings than higher income country groups.
Resumo:
Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, non-integrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. ^ A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. ^ One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects. ^
Resumo:
The purpose of this study was to assess the relationship between working professionals' Career Decision-Making Self-Efficacy beliefs (CDMSE beliefs) and their reasons for participating in in-service master's level programs in Taiwan. ^ The data collection instruments used were Grotelueschen's (1985) Participation Reasons Scale (PRS), and Betz, Klein, and Taylor's (1996) Career Decision-Making Self-Efficacy-Short Form (CDMSE-SF), and a Demographic Data Form (DDF) developed specifically for this study. ^ Surveys were administered to 800 working professionals who participated in inservice master's level programs at 22 Taiwanese universities. The survey was conducted in May 2004. Data were analyzed by simple descriptive statistics, principal component factor analysis, and multiple regression. Four factors of participation reasons were found and five components of CDMSE beliefs were scored. ^ Five components of CDMSE beliefs are structured into the CDMSE-SF instrument: Self-Appraisal, Occupational Information, Goal-Selection, Planning, and Problem Solving. The reasons for participation found in this study were: Professional Improvement and Development, Professional Service, Personal Benefit and Job Security, and Professional Competence and Collegial Interaction. Pearson-product moment correlations revealed significant positive correlations between the five CDMSE subscales and the four factors of participation reasons. Multiple regression analysis revealed that participants' beliefs in their abilities to obtain information about occupations accounted for the preponderance of variance of scores on the Participation Reasons Scale (PRS). ^ This study concluded that professionals who believed that they were efficacious in obtaining information about occupations or professions tended to believe that the four reasons for participation represented by the factors of the PRS were important to them in making the decision to participate in continuing education. Additionally, it was noted that the reasons for participations for professionals who did not feel confident in their abilities to find such information could not be determined. ^ Recommendations are offered to assist those individuals responsible for developing recruiting programs in continuing education for professionals in Taiwan. These recommendations focus only on strategies intended to attract this target population of professionals who believe that they are efficacious in obtaining information about occupations. ^
Resumo:
Infrastructure management agencies are facing multiple challenges, including aging infrastructure, reduction in capacity of existing infrastructure, and availability of limited funds. Therefore, decision makers are required to think innovatively and develop inventive ways of using available funds. Maintenance investment decisions are generally made based on physical condition only. It is important to understand that spending money on public infrastructure is synonymous with spending money on people themselves. This also requires consideration of decision parameters, in addition to physical condition, such as strategic importance, socioeconomic contribution and infrastructure utilization. Consideration of multiple decision parameters for infrastructure maintenance investments can be beneficial in case of limited funding. Given this motivation, this dissertation presents a prototype decision support framework to evaluate trade-off, among competing infrastructures, that are candidates for infrastructure maintenance, repair and rehabilitation investments. Decision parameters' performances measured through various factors are combined to determine the integrated state of an infrastructure using Multi-Attribute Utility Theory (MAUT). The integrated state, cost and benefit estimates of probable maintenance actions are utilized alongside expert opinion to develop transition probability and reward matrices for each probable maintenance action for a particular candidate infrastructure. These matrices are then used as an input to the Markov Decision Process (MDP) for the finite-stage dynamic programming model to perform project (candidate)-level analysis to determine optimized maintenance strategies based on reward maximization. The outcomes of project (candidate)-level analysis are then utilized to perform network-level analysis taking the portfolio management approach to determine a suitable portfolio under budgetary constraints. The major decision support outcomes of the prototype framework include performance trend curves, decision logic maps, and a network-level maintenance investment plan for the upcoming years. The framework has been implemented with a set of bridges considered as a network with the assistance of the Pima County DOT, AZ. It is expected that the concept of this prototype framework can help infrastructure management agencies better manage their available funds for maintenance.
Resumo:
Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, nonintegrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects.