6 resultados para Multi-element compounds
em Digital Commons at Florida International University
Resumo:
The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for μXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for μXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for μXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.
Operant and respondent procedures to establish social stimuli as reinforcers in children with autism
Resumo:
According to the DSM-IV- TR (American Psychiatric Association, 2000), one of the core deficits in autism is in the impairment of social interaction. Some have suggested that underlying these deficits is the reality that individuals with autism do not find social stimuli to be as reinforcing as other types of stimuli (Dawson, 2008). An interesting and growing body of literature supports the notion that symptoms in autism may be caused by a general reduction in social motivation (Chevallier et al., 2012). A review of the literature suggests that social orienting and social motivation are low in individuals with autism, and including social motivation as a target for therapeutic intervention should be pursued (Helt et al., 2008). Through our understanding of learning processes, researchers in behavior analysis and related fields have been able to use conditioning procedures to change the function of neutral or ineffective stimuli, including tokens (Ayllon & Azrin, 1968), facial expressions (Gewirtz & Pelaez-Nogueras, 1992) and praise (Dozier et al., 2012). The current study aimed to use operant and respondent procedures to condition social stimuli that were empirically shown to not be reinforcing prior to conditioning. Further, this study aimed to compare the two procedures in their effectiveness to condition social stimuli to function as reinforcers, and in their maintenance of effects over time. Using a multiple-baseline, multi-element design, one social stimulus was conditioned under each procedure to compare the different response rates following conditioning. Finally, the study sought to determine if conditioning social stimuli to function as reinforcers had any effect on the social functioning of young children with autism. Six children diagnosed with autism between the ages of 18 months and 3 years participated. Results show that the respondent procedure (pairing) resulted in more robust and enduring effects than the operant procedure (Sd procedure). Results of a social communication assessment (ESCS, Mundy et al., 2003) before and after conditioning demonstrate gains in all areas of social communication, particularly in the areas of initiating and responding to joint attention.^
Operant and Respondent Procedures to Establish Social Stimuli as Reinforcers in Children with Autism
Resumo:
According to the DSM-IV- TR (American Psychiatric Association, 2000), one of the core deficits in autism is in the impairment of social interaction. Some have suggested that underlying these deficits is the reality that individuals with autism do not find social stimuli to be as reinforcing as other types of stimuli (Dawson, 2008). An interesting and growing body of literature supports the notion that symptoms in autism may be caused by a general reduction in social motivation (Chevallier et al., 2012). A review of the literature suggests that social orienting and social motivation are low in individuals with autism, and including social motivation as a target for therapeutic intervention should be pursued (Helt et al., 2008). Through our understanding of learning processes, researchers in behavior analysis and related fields have been able to use conditioning procedures to change the function of neutral or ineffective stimuli, including tokens (Ayllon & Azrin, 1968), facial expressions (Gewirtz & Pelaez-Nogueras, 1992) and praise (Dozier et al., 2012). The current study aimed to use operant and respondent procedures to condition social stimuli that were empirically shown to not be reinforcing prior to conditioning. Further, this study aimed to compare the two procedures in their effectiveness to condition social stimuli to function as reinforcers, and in their maintenance of effects over time. Using a multiple-baseline, multi-element design, one social stimulus was conditioned under each procedure to compare the different response rates following conditioning. Finally, the study sought to determine if conditioning social stimuli to function as reinforcers had any effect on the social functioning of young children with autism. Six children diagnosed with autism between the ages of 18 months and 3 years participated. Results show that the respondent procedure (pairing) resulted in more robust and enduring effects than the operant procedure (Sd procedure). Results of a social communication assessment (ESCS, Mundy et al., 2003) before and after conditioning demonstrate gains in all areas of social communication, particularly in the areas of initiating and responding to joint attention.
Resumo:
The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for µXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for µXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for µXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.
Resumo:
Mn+1AXn compounds, the ternary layered nanolaminates have gathered momentum in the last decade since its advent because of their unusual but exciting properties. These technologically important compounds combine some of the best properties of metals and ceramics. Like ceramics they are refractory, oxidation resistant, elastically stiff and relatively light. They also exhibit metallic properties like excellent machinability, thermal and electrical conductivity. This dissertation concentrates on the synthesis of germanium-based 211 Mn+1AXn compounds. The main objective of the research was to synthesize predominantly single phase samples of Cr2GeC, V2GeC and Ti2GeC. Another goal was to study the effect of solid substitutions on the M-site of Mn+1AXn compounds with Ge as an A-element. This study is in itself the first to demonstrate the synthesis of (Cr0.5V0.5)2GeC a novel Mn+1AXn compound. Scanning electron microscopy coupled with energy dispersive spectroscopy, x-ray diffraction and electron probe microanalysis were employed to confirm the presence of predominantly single phase samples of M2GeC compounds where M = Ti, V, Cr and (Cr 0.5V0.5). A large part of the dissertation also focuses on the effect of the compressibility on the Ge-based 211 Mn+1AXn compounds with the aid of diamond anvil cell and high energy synchrotron radiation. This study also concentrates on the stability of these compounds at high temperature and thereby determines its suitability as high temperature structural materials. In order to better understand the effect of substitutions on A-site of 211 Mn+1 AXn compounds under high pressure and high temperature, a comparison is made with previously reported 211 Mn+1AXn compounds with Al, Ga and S as A-site elements.
Resumo:
The aim of this work was to develop a new methodology, which can be used to design new refrigerants that are better than the currently used refrigerants. The methodology draws some parallels with the general approach of computer aided molecular design. However, the mathematical way of representing the molecular structure of an organic compound and the use of meta models during the optimization process make it different. In essence, this approach aimed to generate molecules that conform to various property requirements that are known and specified a priori. A modified way of mathematically representing the molecular structure of an organic compound having up to four carbon atoms, along with atoms of other elements such as hydrogen, oxygen, fluorine, chlorine and bromine, was developed. The normal boiling temperature, enthalpy of vaporization, vapor pressure, tropospheric lifetime and biodegradability of 295 different organic compounds, were collected from open literature and data bases or estimated. Surrogate models linking the previously mentioned quantities with the molecular structure were developed. Constraints ensuring the generation of structurally feasible molecules were formulated and used in commercially available optimization algorithms to generate molecular structures of promising new refrigerants. This study was intended to serve as a proof-of-concept of designing refrigerants using the newly developed methodology.