5 resultados para Multi-Phase Flow

em Digital Commons at Florida International University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Flow Cytometry analyzers have become trusted companions due to their ability to perform fast and accurate analyses of human blood. The aim of these analyses is to determine the possible existence of abnormalities in the blood that have been correlated with serious disease states, such as infectious mononucleosis, leukemia, and various cancers. Though these analyzers provide important feedback, it is always desired to improve the accuracy of the results. This is evidenced by the occurrences of misclassifications reported by some users of these devices. It is advantageous to provide a pattern interpretation framework that is able to provide better classification ability than is currently available. Toward this end, the purpose of this dissertation was to establish a feature extraction and pattern classification framework capable of providing improved accuracy for detecting specific hematological abnormalities in flow cytometric blood data. ^ This involved extracting a unique and powerful set of shift-invariant statistical features from the multi-dimensional flow cytometry data and then using these features as inputs to a pattern classification engine composed of an artificial neural network (ANN). The contribution of this method consisted of developing a descriptor matrix that can be used to reliably assess if a donor’s blood pattern exhibits a clinically abnormal level of variant lymphocytes, which are blood cells that are potentially indicative of disorders such as leukemia and infectious mononucleosis. ^ This study showed that the set of shift-and-rotation-invariant statistical features extracted from the eigensystem of the flow cytometric data pattern performs better than other commonly-used features in this type of disease detection, exhibiting an accuracy of 80.7%, a sensitivity of 72.3%, and a specificity of 89.2%. This performance represents a major improvement for this type of hematological classifier, which has historically been plagued by poor performance, with accuracies as low as 60% in some cases. This research ultimately shows that an improved feature space was developed that can deliver improved performance for the detection of variant lymphocytes in human blood, thus providing significant utility in the realm of suspect flagging algorithms for the detection of blood-related diseases.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. ^ A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re = 90–600 and phase change material particle concentrations of ϵp ≤ 0.25, as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (ϵp = 50%–70%) slurry flow. By using the two newly-defined parameters, named effectiveness factor ϵeff and performance index PI, respectively, it is found that there exists an optimal relation between the channel design parameters L and D, particle volume fraction ϵp, Reynolds number Re, and the wall heat flux qw. The influence of the particle volume fraction ϵp, particle size dp, and the particle viscosity μ p, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. ^ To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objective of this work is to develop a quasi three-dimensional numerical model to simulate stony debris flows, considering a continuum fluid phase, composed by water and fine sediments, and a non-continuum phase including large particles, such as pebbles and boulders. Large particles are treated in a Lagrangian frame of reference using the Discrete Element Method, the fluid phase is based on the Eulerian approach, using the Finite Element Method to solve the depth-averaged Navier-Stokes equations in two horizontal dimensions. The particle’s equations of motion are in three dimensions. The model simulates particle-particle collisions and wall-particle collisions, taking into account that particles are immersed in a fluid. Bingham and Cross rheological models are used for the continuum phase. Both formulations provide very stable results, even in the range of very low shear rates. Bingham formulation is better able to simulate the stopping stage of the fluid when applied shear stresses are low. Results of numerical simulations have been compared with data from laboratory experiments on a flume-fan prototype. Results show that the model is capable of simulating the motion of big particles moving in the fluid flow, handling dense particulate flows and avoiding overlap among particles. An application to simulate debris flow events that occurred in Northern Venezuela in 1999 shows that the model could replicate the main boulder accumulation areas that were surveyed by the USGS. Uniqueness of this research is the integration of mud flow and stony debris movement in a single modeling tool that can be used for planning and management of debris flow prone areas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objective of this work is to develop a quasi three-dimensional numerical model to simulate stony debris flows, considering a continuum fluid phase, composed by water and fine sediments, and a non-continuum phase including large particles, such as pebbles and boulders. Large particles are treated in a Lagrangian frame of reference using the Discrete Element Method, the fluid phase is based on the Eulerian approach, using the Finite Element Method to solve the depth-averaged Navier–Stokes equations in two horizontal dimensions. The particle’s equations of motion are in three dimensions. The model simulates particle-particle collisions and wall-particle collisions, taking into account that particles are immersed in a fluid. Bingham and Cross rheological models are used for the continuum phase. Both formulations provide very stable results, even in the range of very low shear rates. Bingham formulation is better able to simulate the stopping stage of the fluid when applied shear stresses are low. Results of numerical simulations have been compared with data from laboratory experiments on a flume-fan prototype. Results show that the model is capable of simulating the motion of big particles moving in the fluid flow, handling dense particulate flows and avoiding overlap among particles. An application to simulate debris flow events that occurred in Northern Venezuela in 1999 shows that the model could replicate the main boulder accumulation areas that were surveyed by the USGS. Uniqueness of this research is the integration of mud flow and stony debris movement in a single modeling tool that can be used for planning and management of debris flow prone areas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re=600-900 and phase change material particle concentrations ¡Ü0.25 , as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (0.5-0.7) slurry flow. By using the two newly-defined parameters, named effectiveness factor and performance index, respectively, it is found that there exists an optimal relation between the channel design parameters, particle volume fraction, Reynolds number, and the wall heat flux. The influence of the particle volume fraction, particle size, and the particle viscosity, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed.