16 resultados para Multi-Objective
em Digital Commons at Florida International University
Resumo:
Numerical optimization is a technique where a computer is used to explore design parameter combinations to find extremes in performance factors. In multi-objective optimization several performance factors can be optimized simultaneously. The solution to multi-objective optimization problems is not a single design, but a family of optimized designs referred to as the Pareto frontier. The Pareto frontier is a trade-off curve in the objective function space composed of solutions where performance in one objective function is traded for performance in others. A Multi-Objective Hybridized Optimizer (MOHO) was created for the purpose of solving multi-objective optimization problems by utilizing a set of constituent optimization algorithms. MOHO tracks the progress of the Pareto frontier approximation development and automatically switches amongst those constituent evolutionary optimization algorithms to speed the formation of an accurate Pareto frontier approximation. Aerodynamic shape optimization is one of the oldest applications of numerical optimization. MOHO was used to perform shape optimization on a 0.5-inch ballistic penetrator traveling at Mach number 2.5. Two objectives were simultaneously optimized: minimize aerodynamic drag and maximize penetrator volume. This problem was solved twice. The first time the problem was solved by using Modified Newton Impact Theory (MNIT) to determine the pressure drag on the penetrator. In the second solution, a Parabolized Navier-Stokes (PNS) solver that includes viscosity was used to evaluate the drag on the penetrator. The studies show the difference in the optimized penetrator shapes when viscosity is absent and present in the optimization. In modern optimization problems, objective function evaluations may require many hours on a computer cluster to perform these types of analysis. One solution is to create a response surface that models the behavior of the objective function. Once enough data about the behavior of the objective function has been collected, a response surface can be used to represent the actual objective function in the optimization process. The Hybrid Self-Organizing Response Surface Method (HYBSORSM) algorithm was developed and used to make response surfaces of objective functions. HYBSORSM was evaluated using a suite of 295 non-linear functions. These functions involve from 2 to 100 variables demonstrating robustness and accuracy of HYBSORSM.
Resumo:
The aim of this work was to develop a new methodology, which can be used to design new refrigerants that are better than the currently used refrigerants. The methodology draws some parallels with the general approach of computer aided molecular design. However, the mathematical way of representing the molecular structure of an organic compound and the use of meta models during the optimization process make it different. In essence, this approach aimed to generate molecules that conform to various property requirements that are known and specified a priori. A modified way of mathematically representing the molecular structure of an organic compound having up to four carbon atoms, along with atoms of other elements such as hydrogen, oxygen, fluorine, chlorine and bromine, was developed. The normal boiling temperature, enthalpy of vaporization, vapor pressure, tropospheric lifetime and biodegradability of 295 different organic compounds, were collected from open literature and data bases or estimated. Surrogate models linking the previously mentioned quantities with the molecular structure were developed. Constraints ensuring the generation of structurally feasible molecules were formulated and used in commercially available optimization algorithms to generate molecular structures of promising new refrigerants. This study was intended to serve as a proof-of-concept of designing refrigerants using the newly developed methodology.
Resumo:
Environmentally conscious construction has received a significant amount of research attention during the last decades. Even though construction literature is rich in studies that emphasize the importance of environmental impact during the construction phase, most of the previous studies failed to combine environmental analysis with other project performance criteria in construction. This is mainly because most of the studies have overlooked the multi-objective nature of construction projects. In order to achieve environmentally conscious construction, multi-objectives and their relationships need to be successfully analyzed in the complex construction environment. The complex construction system is composed of changing project conditions that have an impact on the relationship between time, cost and environmental impact (TCEI) of construction operations. Yet, this impact is still unknown by construction professionals. Studying this impact is vital to fulfill multiple project objectives and achieve environmentally conscious construction. This research proposes an analytical framework to analyze the impact of changing project conditions on the relationship of TCEI. This study includes green house gas (GHG) emissions as an environmental impact category. The methodology utilizes multi-agent systems, multi-objective optimization, analytical network process, and system dynamics tools to study the relationships of TCEI and support decision-making under the influence of project conditions. Life cycle assessment (LCA) is applied to the evaluation of environmental impact in terms of GHG. The mixed method approach allowed for the collection and analysis of qualitative and quantitative data. Structured interviews of professionals in the highway construction field were conducted to gain their perspectives in decision-making under the influence of certain project conditions, while the quantitative data were collected from the Florida Department of Transportation (FDOT) for highway resurfacing projects. The data collected were used to test the framework. The framework yielded statistically significant results in simulating project conditions and optimizing TCEI. The results showed that the change in project conditions had a significant impact on the TCEI optimal solutions. The correlation between TCEI suggested that they affected each other positively, but in different strengths. The findings of the study will assist contractors to visualize the impact of their decision on the relationship of TCEI.
Resumo:
Bus stops are key links in the journeys of transit patrons with disabilities. Inaccessible bus stops prevent people with disabilities from using fixed-route bus services, thus limiting their mobility. The Americans with Disabilities Act (ADA) of 1990 prescribes the minimum requirements for bus stop accessibility by riders with disabilities. Due to limited budgets, transit agencies can only select a limited number of bus stop locations for ADA improvements annually. These locations should preferably be selected such that they maximize the overall benefits to patrons with disabilities. In addition, transit agencies may also choose to implement the universal design paradigm, which involves higher design standards than current ADA requirements and can provide amenities that are useful for all riders, like shelters and lighting. Many factors can affect the decision to improve a bus stop, including rider-based aspects like the number of riders with disabilities, total ridership, customer complaints, accidents, deployment costs, as well as locational aspects like the location of employment centers, schools, shopping areas, and so on. These interlacing factors make it difficult to identify optimum improvement locations without the aid of an optimization model. This dissertation proposes two integer programming models to help identify a priority list of bus stops for accessibility improvements. The first is a binary integer programming model designed to identify bus stops that need improvements to meet the minimum ADA requirements. The second involves a multi-objective nonlinear mixed integer programming model that attempts to achieve an optimal compromise among the two accessibility design standards. Geographic Information System (GIS) techniques were used extensively to both prepare the model input and examine the model output. An analytic hierarchy process (AHP) was applied to combine all of the factors affecting the benefits to patrons with disabilities. An extensive sensitivity analysis was performed to assess the reasonableness of the model outputs in response to changes in model constraints. Based on a case study using data from Broward County Transit (BCT) in Florida, the models were found to produce a list of bus stops that upon close examination were determined to be highly logical. Compared to traditional approaches using staff experience, requests from elected officials, customer complaints, etc., these optimization models offer a more objective and efficient platform on which to make bus stop improvement suggestions.
Resumo:
An emergency is a deviation from a planned course of events that endangers people, properties, or the environment. It can be described as an unexpected event that causes economic damage, destruction, and human suffering. When a disaster happens, Emergency Managers are expected to have a response plan to most likely disaster scenarios. Unlike earthquakes and terrorist attacks, a hurricane response plan can be activated ahead of time, since a hurricane is predicted at least five days before it makes landfall. This research looked into the logistics aspects of the problem, in an attempt to develop a hurricane relief distribution network model. We addressed the problem of how to efficiently and effectively deliver basic relief goods to victims of a hurricane disaster. Specifically, where to preposition State Staging Areas (SSA), which Points of Distributions (PODs) to activate, and the allocation of commodities to each POD. Previous research has addressed several of these issues, but not with the incorporation of the random behavior of the hurricane's intensity and path. This research presents a stochastic meta-model that deals with the location of SSAs and the allocation of commodities. The novelty of the model is that it treats the strength and path of the hurricane as stochastic processes, and models them as Discrete Markov Chains. The demand is also treated as stochastic parameter because it depends on the stochastic behavior of the hurricane. However, for the meta-model, the demand is an input that is determined using Hazards United States (HAZUS), a software developed by the Federal Emergency Management Agency (FEMA) that estimates losses due to hurricanes and floods. A solution heuristic has been developed based on simulated annealing. Since the meta-model is a multi-objective problem, the heuristic is a multi-objective simulated annealing (MOSA), in which the initial solution and the cooling rate were determined via a Design of Experiments. The experiment showed that the initial temperature (T0) is irrelevant, but temperature reduction (δ) must be very gradual. Assessment of the meta-model indicates that the Markov Chains performed as well or better than forecasts made by the National Hurricane Center (NHC). Tests of the MOSA showed that it provides solutions in an efficient manner. Thus, an illustrative example shows that the meta-model is practical.
Resumo:
The purpose of this thesis was to identify the optimal design parameters for a jet nozzle which obtains a local maximum shear stress while maximizing the average shear stress on the floor of a fluid filled system. This research examined how geometric parameters of a jet nozzle, such as the nozzle's angle, height, and orifice, influence the shear stress created on the bottom surface of a tank. Simulations were run using a Computational Fluid Dynamics (CFD) software package to determine shear stress values for a parameterized geometric domain including the jet nozzle. A response surface was created based on the shear stress values obtained from 112 simulated designs. A multi-objective optimization software utilized the response surface to generate designs with the best combination of parameters to achieve maximum shear stress and maximum average shear stress. The optimal configuration of parameters achieved larger shear stress values over a commercially available design.
Resumo:
Many classical as well as modern optimization techniques exist. One such modern method belonging to the field of swarm intelligence is termed ant colony optimization. This relatively new concept in optimization involves the use of artificial ants and is based on real ant behavior inspired by the way ants search for food. In this thesis, a novel ant colony optimization technique for continuous domains was developed. The goal was to provide improvements in computing time and robustness when compared to other optimization algorithms. Optimization function spaces can have extreme topologies and are therefore difficult to optimize. The proposed method effectively searched the domain and solved difficult single-objective optimization problems. The developed algorithm was run for numerous classic test cases for both single and multi-objective problems. The results demonstrate that the method is robust, stable, and that the number of objective function evaluations is comparable to other optimization algorithms.
Resumo:
Construction projects are complex endeavors that require the involvement of different professional disciplines in order to meet various project objectives that are often conflicting. The level of complexity and the multi-objective nature of construction projects lend themselves to collaborative design and construction such as integrated project delivery (IPD), in which relevant disciplines work together during project conception, design and construction. Traditionally, the main objectives of construction projects have been to build in the least amount of time with the lowest cost possible, thus the inherent and well-established relationship between cost and time has been the focus of many studies. The importance of being able to effectively model relationships among multiple objectives in building construction has been emphasized in a wide range of research. In general, the trade-off relationship between time and cost is well understood and there is ample research on the subject. However, despite sustainable building designs, relationships between time and environmental impact, as well as cost and environmental impact, have not been fully investigated. The objectives of this research were mainly to analyze and identify relationships of time, cost, and environmental impact, in terms of CO2 emissions, at different levels of a building: material level, component level, and building level, at the pre-use phase, including manufacturing and construction, and the relationships of life cycle cost and life cycle CO2 emissions at the usage phase. Additionally, this research aimed to develop a robust simulation-based multi-objective decision-support tool, called SimulEICon, which took construction data uncertainty into account, and was capable of incorporating life cycle assessment information to the decision-making process. The findings of this research supported the trade-off relationship between time and cost at different building levels. Moreover, the time and CO2 emissions relationship presented trade-off behavior at the pre-use phase. The results of the relationship between cost and CO2 emissions were interestingly proportional at the pre-use phase. The same pattern continually presented after the construction to the usage phase. Understanding the relationships between those objectives is a key in successfully planning and designing environmentally sustainable construction projects.
Resumo:
The aim of this work is to present a methodology to develop cost-effective thermal management solutions for microelectronic devices, capable of removing maximum amount of heat and delivering maximally uniform temperature distributions. The topological and geometrical characteristics of multiple-story three-dimensional branching networks of microchannels were developed using multi-objective optimization. A conjugate heat transfer analysis software package and an automatic 3D microchannel network generator were developed and coupled with a modified version of a particle-swarm optimization algorithm with a goal of creating a design tool for 3D networks of optimized coolant flow passages. Numerical algorithms in the conjugate heat transfer solution package include a quasi-ID thermo-fluid solver and a steady heat diffusion solver, which were validated against results from high-fidelity Navier-Stokes equations solver and analytical solutions for basic fluid dynamics test cases. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with 3D microchannel networks, with pumping power requirements up to 50% lower with respect to currently used high-performance cooling technologies.
Resumo:
Design and analysis of conceptually different cooling systems for the human heart preservation are numerically investigated. A heart cooling container with required connections was designed for a normal size human heart. A three-dimensional, high resolution human heart geometric model obtained from CT-angio data was used for simulations. Nine different cooling designs are introduced in this research. The first cooling design (Case 1) used a cooling gelatin only outside of the heart. In the second cooling design (Case 2), the internal parts of the heart were cooled via pumping a cooling liquid inside both the heart’s pulmonary and systemic circulation systems. An unsteady conjugate heat transfer analysis is performed to simulate the temperature field variations within the heart during the cooling process. Case 3 simulated the currently used cooling method in which the coolant is stagnant. Case 4 was a combination of Case 1 and Case 2. A linear thermoelasticity analysis was performed to assess the stresses applied on the heart during the cooling process. In Cases 5 through 9, the coolant solution was used for both internal and external cooling. For external circulation in Case 5 and Case 6, two inlets and two outlets were designed on the walls of the cooling container. Case 5 used laminar flows for coolant circulations inside and outside of the heart. Effects of turbulent flow on cooling of the heart were studied in Case 6. In Case 7, an additional inlet was designed on the cooling container wall to create a jet impinging the hot region of the heart’s wall. Unsteady periodic inlet velocities were applied in Case 8 and Case 9. The average temperature of the heart in Case 5 was +5.0oC after 1500 s of cooling. Multi-objective constrained optimization was performed for Case 5. Inlet velocities for two internal and one external coolant circulations were the three design variables for optimization. Minimizing the average temperature of the heart, wall shear stress and total volumetric flow rates were the three objectives. The only constraint was to keep von Mises stress below the ultimate tensile stress of the heart’s tissue.
Resumo:
The objective of this study is to identify the optimal designs of converging-diverging supersonic and hypersonic nozzles that perform at maximum uniformity of thermodynamic and flow-field properties with respect to their average values at the nozzle exit. Since this is a multi-objective design optimization problem, the design variables used are parameters defining the shape of the nozzle. This work presents how variation of such parameters can influence the nozzle exit flow non-uniformities. A Computational Fluid Dynamics (CFD) software package, ANSYS FLUENT, was used to simulate the compressible, viscous gas flow-field in forty nozzle shapes, including the heat transfer analysis. The results of two turbulence models, k-e and k-ω, were computed and compared. With the analysis results obtained, the Response Surface Methodology (RSM) was applied for the purpose of performing a multi-objective optimization. The optimization was performed with ModeFrontier software package using Kriging and Radial Basis Functions (RBF) response surfaces. Final Pareto optimal nozzle shapes were then analyzed with ANSYS FLUENT to confirm the accuracy of the optimization process.
Resumo:
This dissertation discussed resource allocation mechanisms in several network topologies including infrastructure wireless network, non-infrastructure wireless network and wire-cum-wireless network. Different networks may have different resource constrains. Based on actual technologies and implementation models, utility function, game theory and a modern control algorithm have been introduced to balance power, bandwidth and customers' satisfaction in the system. ^ In infrastructure wireless networks, utility function was used in the Third Generation (3G) cellular network and the network was trying to maximize the total utility. In this dissertation, revenue maximization was set as an objective. Compared with the previous work on utility maximization, it is more practical to implement revenue maximization by the cellular network operators. The pricing strategies were studied and the algorithms were given to find the optimal price combination of power and rate to maximize the profit without degrading the Quality of Service (QoS) performance. ^ In non-infrastructure wireless networks, power capacity is limited by the small size of the nodes. In such a network, nodes need to transmit traffic not only for themselves but also for their neighbors, so power management become the most important issue for the network overall performance. Our innovative routing algorithm based on utility function, sets up a flexible framework for different users with different concerns in the same network. This algorithm allows users to make trade offs between multiple resource parameters. Its flexibility makes it a suitable solution for the large scale non-infrastructure network. This dissertation also covers non-cooperation problems. Through combining game theory and utility function, equilibrium points could be found among rational users which can enhance the cooperation in the network. ^ Finally, a wire-cum-wireless network architecture was introduced. This network architecture can support multiple services over multiple networks with smart resource allocation methods. Although a SONET-to-WiMAX case was used for the analysis, the mathematic procedure and resource allocation scheme could be universal solutions for all infrastructure, non-infrastructure and combined networks. ^
Resumo:
Due to low cost and easy deployment, multi-hop wireless networks become a very attractive communication paradigm. However, IEEE 802.11 medium access control (MAC) protocol widely used in wireless LANs was not designed for multi-hop wireless networks. Although it can support some kinds of ad hoc network architecture, it does not function efficiently in those wireless networks with multi-hop connectivity. Therefore, our research is focused on studying the medium access control in multi-hop wireless networks. The objective is to design practical MAC layer protocols for supporting multihop wireless networks. Particularly, we try to prolong the network lifetime without degrading performances with small battery-powered devices and improve the system throughput with poor quality channels. ^ In this dissertation, we design two MAC protocols. The first one is aimed at minimizing energy-consumption without deteriorating communication activities, which provides energy efficiency, latency guarantee, adaptability and scalability in one type of multi-hop wireless networks (i.e. wireless sensor network). Methodologically, inspired by the phase transition phenomena in distributed networks, we define the wake-up probability, which maintained by each node. By using this probability, we can control the number of wireless connectivity within a local area. More specifically, we can adaptively adjust the wake-up probability based on the local network conditions to reduce energy consumption without increasing transmission latency. The second one is a cooperative MAC layer protocol for multi-hop wireless networks, which leverages multi-rate capability by cooperative transmission among multiple neighboring nodes. Moreover, for bidirectional traffic, the network throughput can be further increased by using the network coding technique. It is a very helpful complement for current rate-adaptive MAC protocols under the poor channel conditions of direct link. Finally, we give an analytical model to analyze impacts of cooperative node on the system throughput. ^
Resumo:
In the past two decades, multi-agent systems (MAS) have emerged as a new paradigm for conceptualizing large and complex distributed software systems. A multi-agent system view provides a natural abstraction for both the structure and the behavior of modern-day software systems. Although there were many conceptual frameworks for using multi-agent systems, there was no well established and widely accepted method for modeling multi-agent systems. This dissertation research addressed the representation and analysis of multi-agent systems based on model-oriented formal methods. The objective was to provide a systematic approach for studying MAS at an early stage of system development to ensure the quality of design. ^ Given that there was no well-defined formal model directly supporting agent-oriented modeling, this study was centered on three main topics: (1) adapting a well-known formal model, predicate transition nets (PrT nets), to support MAS modeling; (2) formulating a modeling methodology to ease the construction of formal MAS models; and (3) developing a technique to support machine analysis of formal MAS models using model checking technology. PrT nets were extended to include the notions of dynamic structure, agent communication and coordination to support agent-oriented modeling. An aspect-oriented technique was developed to address the modularity of agent models and compositionality of incremental analysis. A set of translation rules were defined to systematically translate formal MAS models to concrete models that can be verified through the model checker SPIN (Simple Promela Interpreter). ^ This dissertation presents the framework developed for modeling and analyzing MAS, including a well-defined process model based on nested PrT nets, and a comprehensive methodology to guide the construction and analysis of formal MAS models.^
Resumo:
Hurricane is one of the most destructive and costly natural hazard to the built environment and its impact on low-rise buildings, particularity, is beyond acceptable. The major objective of this research was to perform a parametric evaluation of internal pressure (IP) for wind-resistant design of low-rise buildings and wind-driven natural ventilation applications. For this purpose, a multi-scale experimental, i.e. full-scale at Wall of Wind (WoW) and small-scale at Boundary Layer Wind Tunnel (BLWT), and a Computational Fluid Dynamics (CFD) approach was adopted. This provided new capability to assess wind pressures realistically on internal volumes ranging from small spaces formed between roof tiles and its deck to attic to room partitions. Effects of sudden breaching, existing dominant openings on building envelopes as well as compartmentalization of building interior on the IP were systematically investigated. Results of this research indicated: (i) for sudden breaching of dominant openings, the transient overshooting response was lower than the subsequent steady state peak IP and internal volume correction for low-wind-speed testing facilities was necessary. For example a building without volume correction experienced a response four times faster and exhibited 30–40% lower mean and peak IP; (ii) for existing openings, vent openings uniformly distributed along the roof alleviated, whereas one sided openings aggravated the IP; (iii) larger dominant openings exhibited a higher IP on the building envelope, and an off-center opening on the wall exhibited (30–40%) higher IP than center located openings; (iv) compartmentalization amplified the intensity of IP and; (v) significant underneath pressure was measured for field tiles, warranting its consideration during net pressure evaluations. The study aimed at wind driven natural ventilation indicated: (i) the IP due to cross ventilation was 1.5 to 2.5 times higher for Ainlet/Aoutlet>1 compared to cases where Ainlet/Aoutlet<1, this in effect reduced the mixing of air inside the building and hence the ventilation effectiveness; (ii) the presence of multi-room partitioning increased the pressure differential and consequently the air exchange rate. Overall good agreement was found between the observed large-scale, small-scale and CFD based IP responses. Comparisons with ASCE 7-10 consistently demonstrated that the code underestimated peak positive and suction IP.