24 resultados para Motion Tracking System
em Digital Commons at Florida International University
Resumo:
A multipurpose open architecture motion control system was developed with three platforms for control and monitoring. The Visual Basic user interface communicated with the operator and gave instructions to the electronic components. The first platform had a BASIC Stamp based controller and three stepping motors. The second platform had a controller, amplifiers and two DC servomotors. The third platform had a DSP module. In this study, each platform was used on machine tools either to move the table or to evaluate the incoming signal. The study indicated that by using advanced microcontrollers, which use high-level languages, motor controllers, DSPs (Digital Signal Processor) and microcomputers, the motion control of different systems could be realized in a short time. Although, the proposed systems had some limitations, their jobs were performed effectively. ^
Resumo:
Most studies of language minority students' performance focus on students' characteristics. This study uses qualitative methodology to examine instead how educational policies and practices affect the tracking of language minority students who are classified as limited English proficient (LEP). The placement of LEP students in core courses (English, Math, Social Studies, and Science) is seen as resulting from the interaction between school context and student characteristics. The school context includes factors such as equity policy requirements, overcrowding, attitudes regarding immigrants' academic potential, tracking, and testing practices. Interaction among these factors frequently leads to placement in lower track courses. It was found that the absence of formal tracks could be misleading to immigrant students, particularly those with high aspirations who do not understand the implications of the informal tracking system. Findings are discussed in relation to current theoretical explanations for minority student performance. ^
Resumo:
An Automatic Vehicle Location (AVL) system is a computer-based vehicle tracking system that is capable of determining a vehicle's location in real time. As a major technology of the Advanced Public Transportation System (APTS), AVL systems have been widely deployed by transit agencies for purposes such as real-time operation monitoring, computer-aided dispatching, and arrival time prediction. AVL systems make a large amount of transit performance data available that are valuable for transit performance management and planning purposes. However, the difficulties of extracting useful information from the huge spatial-temporal database have hindered off-line applications of the AVL data. ^ In this study, a data mining process, including data integration, cluster analysis, and multiple regression, is proposed. The AVL-generated data are first integrated into a Geographic Information System (GIS) platform. The model-based cluster method is employed to investigate the spatial and temporal patterns of transit travel speeds, which may be easily translated into travel time. The transit speed variations along the route segments are identified. Transit service periods such as morning peak, mid-day, afternoon peak, and evening periods are determined based on analyses of transit travel speed variations for different times of day. The seasonal patterns of transit performance are investigated by using the analysis of variance (ANOVA). Travel speed models based on the clustered time-of-day intervals are developed using important factors identified as having significant effects on speed for different time-of-day periods. ^ It has been found that transit performance varied from different seasons and different time-of-day periods. The geographic location of a transit route segment also plays a role in the variation of the transit performance. The results of this research indicate that advanced data mining techniques have good potential in providing automated techniques of assisting transit agencies in service planning, scheduling, and operations control. ^
Resumo:
The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^
Resumo:
The premise of this dissertation is to create a highly integrated platform that combines the most current recording technologies for brain research through the development of new algorithms for three-dimensional (3D) functional mapping and 3D source localization. The recording modalities that were integrated include: Electroencephalography (EEG), Optical Topographic Maps (OTM), Magnetic Resonance Imaging (MRI), and Diffusion Tensor Imaging (DTI). This work can be divided into two parts: The first part involves the integration of OTM with MRI, where the topographic maps are mapped to both the skull and cortical surface of the brain. This integration process is made possible through the development of new algorithms that determine the probes location on the MRI head model and warping the 2D topographic maps onto the 3D MRI head/brain model. Dynamic changes of the brain activation can be visualized on the MRI head model through a graphical user interface. The second part of this research involves augmenting a fiber tracking system, by adding the ability to integrate the source localization results generated by commercial software named Curry. This task involved registering the EEG electrodes and the dipole results to the MRI data. Such Integration will allow the visualization of fiber tracts, along with the source of the EEG, in a 3D transparent brain structure. The research findings of this dissertation were tested and validated through the participation of patients from Miami Children Hospital (MCH). Such an integrated platform presented to the medical professionals in the form of a user-friendly graphical interface is viewed as a major contribution of this dissertation. It should be emphasized that there are two main aspects to this research endeavor: (1) if a dipole could be situated in time at its different positions, its trajectory may reveal additional information on the extent and nature of the brain malfunction; (2) situating such a dipole trajectory with respect to the fiber tracks could ensure the preservation of these fiber tracks (axons) during surgical interventions, preserving as a consequence these parts of the brain that are responsible for information transmission.
Resumo:
This dissertation introduces the design of a multimodal, adaptive real-time assistive system as an alternate human computer interface that can be used by individuals with severe motor disabilities. The proposed design is based on the integration of a remote eye-gaze tracking system, voice recognition software, and a virtual keyboard. The methodology relies on a user profile that customizes eye gaze tracking using neural networks. The user profiling feature facilitates the notion of universal access to computing resources for a wide range of applications such as web browsing, email, word processing and editing. ^ The study is significant in terms of the integration of key algorithms to yield an adaptable and multimodal interface. The contributions of this dissertation stem from the following accomplishments: (a) establishment of the data transport mechanism between the eye-gaze system and the host computer yielding to a significantly low failure rate of 0.9%; (b) accurate translation of eye data into cursor movement through congregate steps which conclude with calibrated cursor coordinates using an improved conversion function; resulting in an average reduction of 70% of the disparity between the point of gaze and the actual position of the mouse cursor, compared with initial findings; (c) use of both a moving average and a trained neural network in order to minimize the jitter of the mouse cursor, which yield an average jittering reduction of 35%; (d) introduction of a new mathematical methodology to measure the degree of jittering of the mouse trajectory; (e) embedding an onscreen keyboard to facilitate text entry, and a graphical interface that is used to generate user profiles for system adaptability. ^ The adaptability nature of the interface is achieved through the establishment of user profiles, which may contain the jittering and voice characteristics of a particular user as well as a customized list of the most commonly used words ordered according to the user's preferences: in alphabetical or statistical order. This allows the system to successfully provide the capability of interacting with a computer. Every time any of the sub-system is retrained, the accuracy of the interface response improves even more. ^
Resumo:
Most studies of language minority students' performance focus on students' characteristics. This study uses qualitative methodology to examine instead how educational policies and practices affect the tracking of language minority students who are classified as limited English proficient (LEP). The placement of LEP students in core courses (English, Math, Social Studies, and Science) is seen as resulting from the interaction between school context and student characteristics. The school context includes factors such as equity policy requirements, overcrowding, attitudes regarding immigrants' academic potential, tracking, and testing practices. Interaction among these factors frequently leads to placement in lower track courses. It was found that the absence of formal tracks could be misleading to immigrant students, particularly those with high aspirations who do not understand the implications of the informal tracking system. Findings are discussed in relation to current theoretical explanations for minority student performance.
Resumo:
This research pursued the conceptualization and real-time verification of a system that allows a computer user to control the cursor of a computer interface without using his/her hands. The target user groups for this system are individuals who are unable to use their hands due to spinal dysfunction or other afflictions, and individuals who must use their hands for higher priority tasks while still requiring interaction with a computer. ^ The system receives two forms of input from the user: Electromyogram (EMG) signals from muscles in the face and point-of-gaze coordinates produced by an Eye Gaze Tracking (EGT) system. In order to produce reliable cursor control from the two forms of user input, the development of this EMG/EGT system addressed three key requirements: an algorithm was created to accurately translate EMG signals due to facial movements into cursor actions, a separate algorithm was created that recognized an eye gaze fixation and provided an estimate of the associated eye gaze position, and an information fusion protocol was devised to efficiently integrate the outputs of these algorithms. ^ Experiments were conducted to compare the performance of EMG/EGT cursor control to EGT-only control and mouse control. These experiments took the form of two different types of point-and-click trials. The data produced by these experiments were evaluated using statistical analysis, Fitts' Law analysis and target re-entry (TRE) analysis. ^ The experimental results revealed that though EMG/EGT control was slower than EGT-only and mouse control, it provided effective hands-free control of the cursor without a spatial accuracy limitation, and it also facilitated a reliable click operation. This combination of qualities is not possessed by either EGT-only or mouse control, making EMG/EGT cursor control a unique and practical alternative for a user's cursor control needs. ^
Resumo:
In their discussion - Database System for Alumni Tracking - by Steven Moll, Associate Professor and William O'Brien, Assistant Professor, School of Hospitality Management at Florida International University, Professors Moll and O’Brien initially state: “The authors describe a unique database program which was created to solve problems associated with tracking hospitality majors subsequent to graduation.” “…and please, whatever you do, keep in touch with your school; join an alum’ organization. It is a great way to engage the resources of your school to help further your career,” says Professor Claudia Castillo in addressing a group of students attending her Life after College seminar on 9/18/2009. This is a very good point and it is obviously germane to the article at hand. “One of the greatest strengths of a hospitality management school, a strength that grows with each passing year, is its body of alumni,” say the authors. “Whether in recruiting new students or placing graduates, whether in fund raising or finding scholarship recipients, whatever the task, the network of loyal alumni stands ready to help.” The caveat is the resources are only available if students and school, faculty and alumni can keep track of each other, say professors Moll and O’Brien. The authors want you to know that the practice is now considered essential to success, especially in the hospitality industry whereby the fluid nature of the industry makes networking de rigueur to accomplishment. “When the world was a smaller, slower place, it was fairly easy for graduates to keep track of each other; there weren't that many graduates and they didn't move that often,” say the authors. “Now the hospitality graduate enters an international job market and may move five times in the first four years of employment,” they expand that thought. In the contemporary atmosphere linking human resources from institution to marketplace is relatively easy to do. “How can an association keep track of its graduates? There are many techniques, but all of them depend upon adequate recordkeeping,” Moll and O’Brien answer their own query. “A few years ago that would have meant a group of secretaries; today it means a database system,” they say. Moll and O’Brien discuss the essentials of compiling/programming such a comprehensive data base; the body of information to include, guidelines on the problems encountered, and how to avoid the pitfalls. They use the Florida International University, Hospitality database as a template for their example.
Resumo:
Effective interaction with personal computers is a basic requirement for many of the functions that are performed in our daily lives. With the rapid emergence of the Internet and the World Wide Web, computers have become one of the premier means of communication in our society. Unfortunately, these advances have not become equally accessible to physically handicapped individuals. In reality, a significant number of individuals with severe motor disabilities, due to a variety of causes such as Spinal Cord Injury (SCI), Amyothrophic Lateral Sclerosis (ALS), etc., may not be able to utilize the computer mouse as a vital input device for computer interaction. The purpose of this research was to further develop and improve an existing alternative input device for computer cursor control to be used by individuals with severe motor disabilities. This thesis describes the development and the underlying principle for a practical hands-off human-computer interface based on Electromyogram (EMG) signals and Eye Gaze Tracking (EGT) technology compatible with the Microsoft Windows operating system (OS). Results of the software developed in this thesis show a significant improvement in the performance and usability of the EMG/EGT cursor control HCI.
Resumo:
In the 1980's and 1990's, Argentina was undergoing significant political, social and economic changes as a result of the change over from a military driven government to elected governments. A major aspect of the change was an increased emphasis on privatization, and promotion of foreign and domestic investment in Argentina. Higher education leaders were increasingly drawn into developing a national strategy for changing the educational structure to help facilitate changes in other aspects of the society. Preliminary reviews by the Argentinean higher education leaders indicated that adaptation of the American community college promised to help achieve the national goals. ^ The purpose of this study was to determine: if and how the community college concept, an American invention, could be adapted to function in Argentina, a nation with a significantly different history of political, social, cultural and economic development. Achieving this purpose involved: identifying the key leaders in the movement that developed to apply the community college concept in Argentina; the study of their perspectives regarding the movement as it developed; and tracking the assistance given by selected American community college leaders. ^ The case study method was employed in this research, using interview and historical data collection. Key leaders from higher education in the United States and Argentina were interviewed in-depth, to determine their views. An interview protocol with appropriate sub-questions was followed to ensure complete coverage. The interviewees identified several major areas of education in need of change including, the system, access to the system, new areas of study, integration into the hemisphere and, in general, decentralization. Historical review revealed a steady development of the community college concept in Argentina reflected in documentation of events, conceptual writings and legal structures. ^ It was concluded that there is a community college structure beginning to emerge that, so far, in broad outline, follows the structure developed in the United States. It is anticipated however, that future developments will include conceptual aspects to the model reflective of Argentina. ^
Resumo:
This dissertation establishes the foundation for a new 3-D visual interface integrating Magnetic Resonance Imaging (MRI) to Diffusion Tensor Imaging (DTI). The need for such an interface is critical for understanding brain dynamics, and for providing more accurate diagnosis of key brain dysfunctions in terms of neuronal connectivity. ^ This work involved two research fronts: (1) the development of new image processing and visualization techniques in order to accurately establish relational positioning of neuronal fiber tracts and key landmarks in 3-D brain atlases, and (2) the obligation to address the computational requirements such that the processing time is within the practical bounds of clinical settings. The system was evaluated using data from thirty patients and volunteers with the Brain Institute at Miami Children's Hospital. ^ Innovative visualization mechanisms allow for the first time white matter fiber tracts to be displayed alongside key anatomical structures within accurately registered 3-D semi-transparent images of the brain. ^ The segmentation algorithm is based on the calculation of mathematically-tuned thresholds and region-detection modules. The uniqueness of the algorithm is in its ability to perform fast and accurate segmentation of the ventricles. In contrast to the manual selection of the ventricles, which averaged over 12 minutes, the segmentation algorithm averaged less than 10 seconds in its execution. ^ The registration algorithm established searches and compares MR with DT images of the same subject, where derived correlation measures quantify the resulting accuracy. Overall, the images were 27% more correlated after registration, while an average of 1.5 seconds is all it took to execute the processes of registration, interpolation, and re-slicing of the images all at the same time and in all the given dimensions. ^ This interface was fully embedded into a fiber-tracking software system in order to establish an optimal research environment. This highly integrated 3-D visualization system reached a practical level that makes it ready for clinical deployment. ^
Resumo:
Moving objects database systems are the most challenging sub-category among Spatio-Temporal database systems. A database system that updates in real-time the location information of GPS-equipped moving vehicles has to meet even stricter requirements. Currently existing data storage models and indexing mechanisms work well only when the number of moving objects in the system is relatively small. This dissertation research aimed at the real-time tracking and history retrieval of massive numbers of vehicles moving on road networks. A total solution has been provided for the real-time update of the vehicles' location and motion information, range queries on current and history data, and prediction of vehicles' movement in the near future. ^ To achieve these goals, a new approach called Segmented Time Associated to Partitioned Space (STAPS) was first proposed in this dissertation for building and manipulating the indexing structures for moving objects databases. ^ Applying the STAPS approach, an indexing structure of associating a time interval tree to each road segment was developed for real-time database systems of vehicles moving on road networks. The indexing structure uses affordable storage to support real-time data updates and efficient query processing. The data update and query processing performance it provides is consistent without restrictions such as a time window or assuming linear moving trajectories. ^ An application system design based on distributed system architecture with centralized organization was developed to maximally support the proposed data and indexing structures. The suggested system architecture is highly scalable and flexible. Finally, based on a real-world application model of vehicles moving in region-wide, main issues on the implementation of such a system were addressed. ^
Resumo:
Respiratory gating in lung PET imaging to compensate for respiratory motion artifacts is a current research issue with broad potential impact on quantitation, diagnosis and clinical management of lung tumors. However, PET images collected at discrete bins can be significantly affected by noise as there are lower activity counts in each gated bin unless the total PET acquisition time is prolonged, so that gating methods should be combined with imaging-based motion correction and registration methods. The aim of this study was to develop and validate a fast and practical solution to the problem of respiratory motion for the detection and accurate quantitation of lung tumors in PET images. This included: (1) developing a computer-assisted algorithm for PET/CT images that automatically segments lung regions in CT images, identifies and localizes lung tumors of PET images; (2) developing and comparing different registration algorithms which processes all the information within the entire respiratory cycle and integrate all the tumor in different gated bins into a single reference bin. Four registration/integration algorithms: Centroid Based, Intensity Based, Rigid Body and Optical Flow registration were compared as well as two registration schemes: Direct Scheme and Successive Scheme. Validation was demonstrated by conducting experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest phantom imaged using a GE PET/CT System. Iterations were conducted on different size simulated tumors and different noise levels. Static tumors without respiratory motion were used as gold standard; quantitative results were compared with respect to tumor activity concentration, cross-correlation coefficient, relative noise level and computation time. Comparing the results of the tumors before and after correction, the tumor activity values and tumor volumes were closer to the static tumors (gold standard). Higher correlation values and lower noise were also achieved after applying the correction algorithms. With this method the compromise between short PET scan time and reduced image noise can be achieved, while quantification and clinical analysis become fast and precise.
Resumo:
This dissertation establishes a novel system for human face learning and recognition based on incremental multilinear Principal Component Analysis (PCA). Most of the existing face recognition systems need training data during the learning process. The system as proposed in this dissertation utilizes an unsupervised or weakly supervised learning approach, in which the learning phase requires a minimal amount of training data. It also overcomes the inability of traditional systems to adapt to the testing phase as the decision process for the newly acquired images continues to rely on that same old training data set. Consequently when a new training set is to be used, the traditional approach will require that the entire eigensystem will have to be generated again. However, as a means to speed up this computational process, the proposed method uses the eigensystem generated from the old training set together with the new images to generate more effectively the new eigensystem in a so-called incremental learning process. In the empirical evaluation phase, there are two key factors that are essential in evaluating the performance of the proposed method: (1) recognition accuracy and (2) computational complexity. In order to establish the most suitable algorithm for this research, a comparative analysis of the best performing methods has been carried out first. The results of the comparative analysis advocated for the initial utilization of the multilinear PCA in our research. As for the consideration of the issue of computational complexity for the subspace update procedure, a novel incremental algorithm, which combines the traditional sequential Karhunen-Loeve (SKL) algorithm with the newly developed incremental modified fast PCA algorithm, was established. In order to utilize the multilinear PCA in the incremental process, a new unfolding method was developed to affix the newly added data at the end of the previous data. The results of the incremental process based on these two methods were obtained to bear out these new theoretical improvements. Some object tracking results using video images are also provided as another challenging task to prove the soundness of this incremental multilinear learning method.