3 resultados para Monitoring, SLA, JBoss, Middleware, J2EE, Java, Service Level Agreements
em Digital Commons at Florida International University
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity.^ We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. ^ This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.^
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity. We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.
Resumo:
Today, the development of domain-specific communication applications is both time-consuming and error-prone because the low-level communication services provided by the existing systems and networks are primitive and often heterogeneous. Multimedia communication applications are typically built on top of low-level network abstractions such as TCP/UDP socket, SIP (Session Initiation Protocol) and RTP (Real-time Transport Protocol) APIs. The User-centric Communication Middleware (UCM) is proposed to encapsulate the networking complexity and heterogeneity of basic multimedia and multi-party communication for upper-layer communication applications. And UCM provides a unified user-centric communication service to diverse communication applications ranging from a simple phone call and video conferencing to specialized communication applications like disaster management and telemedicine. It makes it easier to the development of domain-specific communication applications. The UCM abstraction and API is proposed to achieve these goals. The dissertation also tries to integrate the formal method into UCM development process. The formal model is created for UCM using SAM methodology. Some design errors are found during model creation because the formal method forces to give the precise description of UCM. By using the SAM tool, formal UCM model is translated to Promela formula model. In the dissertation, some system properties are defined as temporal logic formulas. These temporal logic formulas are manually translated to promela formulas which are individually integrated with promela formula model of UCM and verified using SPIN tool. Formal analysis used here helps verify the system properties (for example multiparty multimedia protocol) and dig out the bugs of systems.